{"title":"Predicting differentially methylated cytosines in TET and DNMT3 knockout mutants via a large language model.","authors":"Saleh Sereshki, Stefano Lonardi","doi":"10.1093/bib/bbaf092","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation is an epigenetic marker that directly or indirectly regulates several critical cellular processes. While cytosines in mammalian genomes generally maintain stable methylation patterns over time, other cytosines that belong to specific regulatory regions, such as promoters and enhancers, can exhibit dynamic changes. These changes in methylation are driven by a complex cellular machinery, in which the enzymes DNMT3 and TET play key roles. The objective of this study is to design a machine learning model capable of accurately predicting which cytosines have a fluctuating methylation level [hereafter called differentially methylated cytosines (DMCs)] from the surrounding DNA sequence. Here, we introduce L-MAP, a transformer-based large language model that is trained on DNMT3-knockout and TET-knockout data in human and mouse embryonic stem cells. Our extensive experimental results demonstrate the high accuracy of L-MAP in predicting DMCs. Our experiments also explore whether a classifier trained on human knockout data could predict DMCs in the mouse genome (and vice versa), and whether a classifier trained on DNMT3 knockout data could predict DMCs in TET knockouts (and vice versa). L-MAP enables the identification of sequence motifs associated with the enzymatic activity of DNMT3 and TET, which include known motifs but also novel binding sites that could provide new insights into DNA methylation in stem cells. L-MAP is available at https://github.com/ucrbioinfo/dmc_prediction.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf092","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation is an epigenetic marker that directly or indirectly regulates several critical cellular processes. While cytosines in mammalian genomes generally maintain stable methylation patterns over time, other cytosines that belong to specific regulatory regions, such as promoters and enhancers, can exhibit dynamic changes. These changes in methylation are driven by a complex cellular machinery, in which the enzymes DNMT3 and TET play key roles. The objective of this study is to design a machine learning model capable of accurately predicting which cytosines have a fluctuating methylation level [hereafter called differentially methylated cytosines (DMCs)] from the surrounding DNA sequence. Here, we introduce L-MAP, a transformer-based large language model that is trained on DNMT3-knockout and TET-knockout data in human and mouse embryonic stem cells. Our extensive experimental results demonstrate the high accuracy of L-MAP in predicting DMCs. Our experiments also explore whether a classifier trained on human knockout data could predict DMCs in the mouse genome (and vice versa), and whether a classifier trained on DNMT3 knockout data could predict DMCs in TET knockouts (and vice versa). L-MAP enables the identification of sequence motifs associated with the enzymatic activity of DNMT3 and TET, which include known motifs but also novel binding sites that could provide new insights into DNA methylation in stem cells. L-MAP is available at https://github.com/ucrbioinfo/dmc_prediction.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.