Nomogram integrating clinical-radiological and radiomics features for differentiating invasive from non-invasive pulmonary adenocarcinomas presenting as ground-glass nodules.
Ning Dong, Sirong Wei, Lei Zheng, Delong Huang, Guowei Zhang, Yunxin Li, Hu Zhang, Aijie Wang, Ranran Huang, Xinyao Zhao, Peng Liang
{"title":"Nomogram integrating clinical-radiological and radiomics features for differentiating invasive from non-invasive pulmonary adenocarcinomas presenting as ground-glass nodules.","authors":"Ning Dong, Sirong Wei, Lei Zheng, Delong Huang, Guowei Zhang, Yunxin Li, Hu Zhang, Aijie Wang, Ranran Huang, Xinyao Zhao, Peng Liang","doi":"10.62347/AOAN9966","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To construct a nomogram incorporating clinical-radiological and radiomics features from computed tomography (CT) for distinguishing invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) in ground-glass nodules (GGNs).</p><p><strong>Methods: </strong>This retrospective study included 473 GGN patients with postoperative pathological confirmation of AIS, MIA, or IAC. The training set comprised 257 patients from Yantaishan Hospital, while the test set, used for external validation, included 216 patients from the Affiliated Hospital of Binzhou Medical College. Radiomics features were selected, and a radiomics model was constructed using least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum relevance (mRMR) methods. A clinical-radiological model was developed using univariate and multivariate logistic regression. The nomogram was generated by combining the two models. Its performance was evaluated via receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The radiomics model included 11 features, while the clinical-radiological model incorporated lobulation, age, and long diameter. The nomogram outperformed both individual models in terms of accuracy and area under the curve (AUC) in both the training and test sets. Calibration curve analysis confirmed good consistency between actual and predicted outcomes, and DCA indicated the nomogram's clinical utility.</p><p><strong>Conclusion: </strong>The nomogram is a non-invasive, accurate tool for preoperative differentiation of GGN types, providing valuable guidance for clinicians in treatment planning.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 2","pages":"797-810"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/AOAN9966","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To construct a nomogram incorporating clinical-radiological and radiomics features from computed tomography (CT) for distinguishing invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) in ground-glass nodules (GGNs).
Methods: This retrospective study included 473 GGN patients with postoperative pathological confirmation of AIS, MIA, or IAC. The training set comprised 257 patients from Yantaishan Hospital, while the test set, used for external validation, included 216 patients from the Affiliated Hospital of Binzhou Medical College. Radiomics features were selected, and a radiomics model was constructed using least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum relevance (mRMR) methods. A clinical-radiological model was developed using univariate and multivariate logistic regression. The nomogram was generated by combining the two models. Its performance was evaluated via receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA).
Results: The radiomics model included 11 features, while the clinical-radiological model incorporated lobulation, age, and long diameter. The nomogram outperformed both individual models in terms of accuracy and area under the curve (AUC) in both the training and test sets. Calibration curve analysis confirmed good consistency between actual and predicted outcomes, and DCA indicated the nomogram's clinical utility.
Conclusion: The nomogram is a non-invasive, accurate tool for preoperative differentiation of GGN types, providing valuable guidance for clinicians in treatment planning.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.