Microporous annealed particle hydrogels in cell culture, tissue regeneration, and emerging application in cancer immunotherapy.

IF 3.6 3区 医学 Q2 ONCOLOGY
American journal of cancer research Pub Date : 2025-02-15 eCollection Date: 2025-01-01 DOI:10.62347/WRGW4430
Junjie Wang, Qin Zhang, Liwen Chen
{"title":"Microporous annealed particle hydrogels in cell culture, tissue regeneration, and emerging application in cancer immunotherapy.","authors":"Junjie Wang, Qin Zhang, Liwen Chen","doi":"10.62347/WRGW4430","DOIUrl":null,"url":null,"abstract":"<p><p>Microporous annealed particle (MAP) hydrogels consist of densely crosslinked and annealed hydrogel particles. Compared to common hydrogels, the inherent porosity within and among these hydrogel particles offers interconnected channels for substance exchange in addition to sufficient growth space for cells, thereby forming a three-dimensional culture system that highly mimics the in vivo microenvironment. Such characteristics enable MAP hydrogels to adapt to various requirements of biomedical applications, along with their excellent injectability and mechanical properties. This review initially provides a comprehensive summary of the fabrication methods and material types of MAP hydrogels, alongside an assessment of their mechanical properties and porosity. In vitro studies are evaluated based on the impact of MAP hydrogels on cellular behaviors, focusing on cell proliferation, differentiation, migration, activity, and phenotype. In vivo research highlights the promising applications of MAP hydrogels in tissue regeneration, as well as their innovative use in cancer immunotherapy. Current challenges and future research directions are outlined, underscoring the potential of MAP hydrogels to significantly improve clinical outcomes in cancer treatment and regenerative medicine.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 2","pages":"665-683"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/WRGW4430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microporous annealed particle (MAP) hydrogels consist of densely crosslinked and annealed hydrogel particles. Compared to common hydrogels, the inherent porosity within and among these hydrogel particles offers interconnected channels for substance exchange in addition to sufficient growth space for cells, thereby forming a three-dimensional culture system that highly mimics the in vivo microenvironment. Such characteristics enable MAP hydrogels to adapt to various requirements of biomedical applications, along with their excellent injectability and mechanical properties. This review initially provides a comprehensive summary of the fabrication methods and material types of MAP hydrogels, alongside an assessment of their mechanical properties and porosity. In vitro studies are evaluated based on the impact of MAP hydrogels on cellular behaviors, focusing on cell proliferation, differentiation, migration, activity, and phenotype. In vivo research highlights the promising applications of MAP hydrogels in tissue regeneration, as well as their innovative use in cancer immunotherapy. Current challenges and future research directions are outlined, underscoring the potential of MAP hydrogels to significantly improve clinical outcomes in cancer treatment and regenerative medicine.

微孔退火颗粒水凝胶在细胞培养、组织再生和癌症免疫治疗中的新应用。
微孔退火颗粒(MAP)水凝胶由紧密交联的退火水凝胶颗粒组成。与普通水凝胶相比,这些水凝胶颗粒内部和颗粒之间固有的孔隙度为物质交换提供了相互连接的通道,并为细胞提供了足够的生长空间,从而形成了一个高度模拟体内微环境的三维培养体系。这些特性使MAP水凝胶能够适应生物医学应用的各种要求,以及它们优异的注射性和力学性能。本文首先对MAP水凝胶的制备方法和材料类型进行了全面的总结,并对其力学性能和孔隙率进行了评估。体外研究基于MAP水凝胶对细胞行为的影响进行评估,重点关注细胞增殖、分化、迁移、活性和表型。体内研究强调了MAP水凝胶在组织再生中的应用前景,以及它们在癌症免疫治疗中的创新应用。概述了目前面临的挑战和未来的研究方向,强调了MAP水凝胶在显著改善癌症治疗和再生医学临床结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
3.80%
发文量
263
期刊介绍: The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信