A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius.

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sailan Liu, Yan Gao, Xinrui Long, Kunhuan Li, Qilin Gutang, Huiying Xie, Jingzhen Wang, Jiashen Tian, Bo Liang, Jianqing Lin, Wenhua Liu
{"title":"A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius.","authors":"Sailan Liu, Yan Gao, Xinrui Long, Kunhuan Li, Qilin Gutang, Huiying Xie, Jingzhen Wang, Jiashen Tian, Bo Liang, Jianqing Lin, Wenhua Liu","doi":"10.1111/1755-0998.14103","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14103"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14103","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信