A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius.
Sailan Liu, Yan Gao, Xinrui Long, Kunhuan Li, Qilin Gutang, Huiying Xie, Jingzhen Wang, Jiashen Tian, Bo Liang, Jianqing Lin, Wenhua Liu
{"title":"A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius.","authors":"Sailan Liu, Yan Gao, Xinrui Long, Kunhuan Li, Qilin Gutang, Huiying Xie, Jingzhen Wang, Jiashen Tian, Bo Liang, Jianqing Lin, Wenhua Liu","doi":"10.1111/1755-0998.14103","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14103"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14103","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.