Cranial radiation disrupts dopaminergic signaling and connectivity in the mammalian brain.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Die Zhang, Riya Thomas, Thanh Thai Lam, Ines Veselinovic, David R Grosshans
{"title":"Cranial radiation disrupts dopaminergic signaling and connectivity in the mammalian brain.","authors":"Die Zhang, Riya Thomas, Thanh Thai Lam, Ines Veselinovic, David R Grosshans","doi":"10.1186/s40478-025-01976-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive impairment is a common and challenging side effect of cranial radiation therapy for brain tumors, though its precise mechanisms remain unclear. The mesocortical dopaminergic pathway, known to play a key role in cognitive function, is implicated in several neuropsychiatric disorders, yet its involvement in radiation-induced cognitive dysfunction is unexplored. Here, with using in vivo multi-electrode array recordings of both anesthetized and free-moving rats to monitor the firing activities of dopamine neurons in the ventral tegmental area (VTA) and local field potentials in both the prefrontal cortex (PFC) and VTA, as well as the immunofluorescence assays and western blotting, we report that cranial irradiation transiently altered VTA dopamine neuron firing patterns without affecting overall firing rates and led to sustained reductions in both \"awake\" and total dopamine neuron density. Additionally, radiation exposure impaired D2 receptor function and disrupted connectivity between the PFC and VTA. These multifaceted disruptions in the mesocortical dopamine signaling may underlie the development of radiation-induced cognitive dysfunction. These findings pave the way for novel research to prevent or reverse radiation-induced injury, ultimately improving the quality of life for brain tumor survivors.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"59"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01976-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive impairment is a common and challenging side effect of cranial radiation therapy for brain tumors, though its precise mechanisms remain unclear. The mesocortical dopaminergic pathway, known to play a key role in cognitive function, is implicated in several neuropsychiatric disorders, yet its involvement in radiation-induced cognitive dysfunction is unexplored. Here, with using in vivo multi-electrode array recordings of both anesthetized and free-moving rats to monitor the firing activities of dopamine neurons in the ventral tegmental area (VTA) and local field potentials in both the prefrontal cortex (PFC) and VTA, as well as the immunofluorescence assays and western blotting, we report that cranial irradiation transiently altered VTA dopamine neuron firing patterns without affecting overall firing rates and led to sustained reductions in both "awake" and total dopamine neuron density. Additionally, radiation exposure impaired D2 receptor function and disrupted connectivity between the PFC and VTA. These multifaceted disruptions in the mesocortical dopamine signaling may underlie the development of radiation-induced cognitive dysfunction. These findings pave the way for novel research to prevent or reverse radiation-induced injury, ultimately improving the quality of life for brain tumor survivors.

颅辐射破坏了哺乳动物大脑中的多巴胺能信号和连接。
认知障碍是脑肿瘤颅脑放射治疗常见且具有挑战性的副作用,尽管其确切机制尚不清楚。中皮质多巴胺能通路,已知在认知功能中起关键作用,与几种神经精神疾病有关,但其与辐射诱导的认知功能障碍的关系尚不清楚。本研究采用麻醉大鼠和自由运动大鼠的体内多电极阵列记录,监测腹侧被皮层(VTA)多巴胺神经元的放电活动和前额叶皮层(PFC)和VTA的局部场电位,并进行免疫荧光和免疫印迹分析。我们的研究报告显示,颅部照射暂时改变了VTA多巴胺神经元的放电模式,而不影响总体放电率,并导致“清醒”和总多巴胺神经元密度的持续降低。此外,辐射暴露损害了D2受体功能,破坏了PFC和VTA之间的连接。这些中皮层多巴胺信号的多面性中断可能是辐射诱导的认知功能障碍发展的基础。这些发现为预防或逆转辐射损伤的新研究铺平了道路,最终提高了脑肿瘤幸存者的生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信