Impact of Cancer-Associated PKM2 Mutations on Enzyme Activity and Allosteric Regulation: Structural and Functional Insights into Metabolic Reprogramming.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-04-01 Epub Date: 2025-03-13 DOI:10.1021/acs.biochem.5c00009
Saurabh Upadhyay, Mohit Bhardwaj, Sivakumar Prasanth Kumar, Shumayila Khan, Ashwani Kumar, Md Imtaiyaz Hassan
{"title":"Impact of Cancer-Associated PKM2 Mutations on Enzyme Activity and Allosteric Regulation: Structural and Functional Insights into Metabolic Reprogramming.","authors":"Saurabh Upadhyay, Mohit Bhardwaj, Sivakumar Prasanth Kumar, Shumayila Khan, Ashwani Kumar, Md Imtaiyaz Hassan","doi":"10.1021/acs.biochem.5c00009","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian pyruvate kinase M2 (PKM2) is a key regulator of glycolysis and is highly expressed in proliferative tissues including tumors. Mutations in PKM2 have been identified in various cancers, but their effects on enzyme activity and regulation are not fully understood. This study investigates the structural and functional effects of cancer-associated PKM2 mutations on enzyme kinetics, allosteric regulation, and oligomerization. Using computational modeling, X-ray crystallography, and biochemical assays, we demonstrated how these mutations impact PKM2 activity, substrate binding, and allosteric activation via fructose-1,6-bisphosphate (FBP), contributing to altered enzyme function. In this study, we characterized four cancer-associated PKM2 mutations (P403A, C474S, R516C, and L144P) using computational, structural, and biochemical approaches. Computational modeling revealed disruptions in allosteric signaling pathways, particularly affecting the communication between regulatory sites and the active site. X-ray crystallography demonstrated local conformational changes in the hinge and FBP-binding regions, leading to a shift from the active tetrameric state to a less active dimeric state, particularly in the C474S and R516C mutants. The mutants exhibited reduced maximal velocity, reduced substrate affinity, and altered activation by the allosteric activator fructose-1,6-bisphosphate (FBP). Under alkaline pH conditions, mimicking the tumor microenvironment, these mutations further destabilized the PKM2 oligomeric state, favoring the formation of lower-order species. Our findings suggest that PKM2 is highly sensitive to mutations, and these alterations may contribute to metabolic reprogramming in cancer cells by impairing its enzymatic regulation.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1463-1475"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mammalian pyruvate kinase M2 (PKM2) is a key regulator of glycolysis and is highly expressed in proliferative tissues including tumors. Mutations in PKM2 have been identified in various cancers, but their effects on enzyme activity and regulation are not fully understood. This study investigates the structural and functional effects of cancer-associated PKM2 mutations on enzyme kinetics, allosteric regulation, and oligomerization. Using computational modeling, X-ray crystallography, and biochemical assays, we demonstrated how these mutations impact PKM2 activity, substrate binding, and allosteric activation via fructose-1,6-bisphosphate (FBP), contributing to altered enzyme function. In this study, we characterized four cancer-associated PKM2 mutations (P403A, C474S, R516C, and L144P) using computational, structural, and biochemical approaches. Computational modeling revealed disruptions in allosteric signaling pathways, particularly affecting the communication between regulatory sites and the active site. X-ray crystallography demonstrated local conformational changes in the hinge and FBP-binding regions, leading to a shift from the active tetrameric state to a less active dimeric state, particularly in the C474S and R516C mutants. The mutants exhibited reduced maximal velocity, reduced substrate affinity, and altered activation by the allosteric activator fructose-1,6-bisphosphate (FBP). Under alkaline pH conditions, mimicking the tumor microenvironment, these mutations further destabilized the PKM2 oligomeric state, favoring the formation of lower-order species. Our findings suggest that PKM2 is highly sensitive to mutations, and these alterations may contribute to metabolic reprogramming in cancer cells by impairing its enzymatic regulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信