{"title":"Spatially Nonhomogeneous Hopf and Turing Bifurcations Driven by the Nonlocal Effect With the Spatial Average Kernel","authors":"Shuyang Xue, Yongli Song","doi":"10.1002/mma.10730","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we first derive the algorithm of calculating the normal form of spatially nonhomogeneous Hopf bifurcation and Turing bifurcation for the general reaction–diffusion system with spatial average. Then we investigate the spatiotemporal dynamics of nonlocal Lotka–Volterra competitive model and nonlocal Holling–Tanner predator–prey model. It has been shown that the spatial average is a new mechanism to induce the patterns. By calculating the normal form, the type of bifurcation and stability of spatiotemporal patterns bifurcating from the constant equilibrium are investigated. For the nonlocal Lotka–Volterra competitive model, the coexistence of two spatially nonhomogeneous spatial patterns is found. For the nonlocal Holling–Tanner predator–prey model, we found not only the coexistence of two spatially nonhomogeneous spatial patterns but also the stable spatially nonhomogeneous periodic patterns.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6953-6972"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10730","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we first derive the algorithm of calculating the normal form of spatially nonhomogeneous Hopf bifurcation and Turing bifurcation for the general reaction–diffusion system with spatial average. Then we investigate the spatiotemporal dynamics of nonlocal Lotka–Volterra competitive model and nonlocal Holling–Tanner predator–prey model. It has been shown that the spatial average is a new mechanism to induce the patterns. By calculating the normal form, the type of bifurcation and stability of spatiotemporal patterns bifurcating from the constant equilibrium are investigated. For the nonlocal Lotka–Volterra competitive model, the coexistence of two spatially nonhomogeneous spatial patterns is found. For the nonlocal Holling–Tanner predator–prey model, we found not only the coexistence of two spatially nonhomogeneous spatial patterns but also the stable spatially nonhomogeneous periodic patterns.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.