求助PDF
{"title":"Global Mild Solution for a Fractional Chemotaxis–Fluid System Modeling Coral Fertilization With Tensor-Valued Sensitivity","authors":"Heng Ruan, Zuhan Liu, Chao Jiang","doi":"10.1002/mma.10671","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the following a fractional chemotaxis–fluid system modeling coral fertilization with tensor-valued sensitivity in \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}&#x0005E;3 $$</annotation>\n </semantics></math>.</p>\n <p>Here the tensor-valued sensitivity function \n<span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mfenced>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ S\\left(x,\\rho, c\\right) $$</annotation>\n </semantics></math> satisfies \n<span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>S</mi>\n <mfenced>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n <mo>|</mo>\n <mo>≤</mo>\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mi>S</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\mid S\\left(x,\\rho, c\\right)\\mid \\le {C}_S $$</annotation>\n </semantics></math>. We show that if \n<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\alpha \\in \\left(\\frac{1}{2},1\\right) $$</annotation>\n </semantics></math> and the initial data satisfy \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <msub>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>w</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msubsup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mo>∩</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>4</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <mo>∇</mo>\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>w</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msubsup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>w</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msubsup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n </mrow>\n <annotation>$$ {\\left\\Vert {\\rho}_0\\right\\Vert}_{L_w&#x0005E;{\\frac{3}{2\\alpha }}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert {m}_0\\right\\Vert}_{L&#x0005E;{\\frac{3}{2\\alpha }}\\left({\\mathbb{R}}&#x0005E;3\\right)\\cap {L}&#x0005E;{\\frac{3}{4\\alpha -2}}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert \\nabla {c}_0\\right\\Vert}_{L_w&#x0005E;{\\frac{3}{2\\alpha -1}}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert {u}_0\\right\\Vert}_{L_w&#x0005E;{\\frac{3}{2\\alpha }}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon $$</annotation>\n </semantics></math> or \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <msub>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>w</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msubsup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mo>∩</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>4</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mo>‖</mo>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mo>‖</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>w</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msubsup>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>≤</mo>\n <mi>ϵ</mi>\n <mo>,</mo>\n </mrow>\n <annotation>$$ {\\left\\Vert {\\rho}_0\\right\\Vert}_{L_w&#x0005E;{\\frac{3}{2\\alpha }}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert {m}_0\\right\\Vert}_{L&#x0005E;{\\frac{3}{2\\alpha }}\\left({\\mathbb{R}}&#x0005E;3\\right)\\cap {L}&#x0005E;{\\frac{3}{4\\alpha -2}}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert {c}_0\\right\\Vert}_{L&#x0005E;1\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, {\\left\\Vert {u}_0\\right\\Vert}_{L_w&#x0005E;{\\frac{3}{2}}\\left({\\mathbb{R}}&#x0005E;3\\right)}\\le \\epsilon, $$</annotation>\n </semantics></math> then this system admits a unique global mild solution, and we also determine the asymptotic behavior and optimal convergence rates of mild solution.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6278-6291"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10671","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this paper, we consider the following a fractional chemotaxis–fluid system modeling coral fertilization with tensor-valued sensitivity in
ℝ
3
$$ {\mathbb{R}}^3 $$
.
Here the tensor-valued sensitivity function
S
x
,
ρ
,
c
$$ S\left(x,\rho, c\right) $$
satisfies
|
S
x
,
ρ
,
c
|
≤
C
S
$$ \mid S\left(x,\rho, c\right)\mid \le {C}_S $$
. We show that if
α
∈
(
1
2
,
1
)
$$ \alpha \in \left(\frac{1}{2},1\right) $$
and the initial data satisfy
‖
ρ
0
‖
L
w
3
2
α
ℝ
3
≤
ϵ
,
‖
m
0
‖
L
3
2
α
ℝ
3
∩
L
3
4
α
−
2
ℝ
3
≤
ϵ
,
‖
∇
c
0
‖
L
w
3
2
α
−
1
ℝ
3
≤
ϵ
,
‖
u
0
‖
L
w
3
2
α
ℝ
3
≤
ϵ
$$ {\left\Vert {\rho}_0\right\Vert}_{L_w^{\frac{3}{2\alpha }}\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert {m}_0\right\Vert}_{L^{\frac{3}{2\alpha }}\left({\mathbb{R}}^3\right)\cap {L}^{\frac{3}{4\alpha -2}}\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert \nabla {c}_0\right\Vert}_{L_w^{\frac{3}{2\alpha -1}}\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert {u}_0\right\Vert}_{L_w^{\frac{3}{2\alpha }}\left({\mathbb{R}}^3\right)}\le \epsilon $$
or
‖
ρ
0
‖
L
w
3
2
α
ℝ
3
≤
ϵ
,
‖
m
0
‖
L
3
2
α
ℝ
3
∩
L
3
4
α
−
2
ℝ
3
≤
ϵ
,
‖
c
0
‖
L
1
ℝ
3
≤
ϵ
,
‖
u
0
‖
L
w
3
2
ℝ
3
≤
ϵ
,
$$ {\left\Vert {\rho}_0\right\Vert}_{L_w^{\frac{3}{2\alpha }}\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert {m}_0\right\Vert}_{L^{\frac{3}{2\alpha }}\left({\mathbb{R}}^3\right)\cap {L}^{\frac{3}{4\alpha -2}}\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert {c}_0\right\Vert}_{L^1\left({\mathbb{R}}^3\right)}\le \epsilon, {\left\Vert {u}_0\right\Vert}_{L_w^{\frac{3}{2}}\left({\mathbb{R}}^3\right)}\le \epsilon, $$
then this system admits a unique global mild solution, and we also determine the asymptotic behavior and optimal convergence rates of mild solution.