{"title":"Infinitely Many Positive Nonradial Solutions for the Kirchhoff Equation","authors":"Hui Guo, Boling Tang, Tao Wang","doi":"10.1002/mma.10718","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We are concerned with the existence of positive nonradial solutions to the following Kirchhoff equation: \n\n </p><div><span><!--FIGURE-->\n <span></span><math>\n <semantics>\n <mrow>\n <mtable>\n <mtr>\n <mtd>\n <mo>−</mo>\n <mspace></mspace>\n <mfenced>\n <mrow>\n <mi>a</mi>\n <mo>+</mo>\n <mi>b</mi>\n <msub>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </msub>\n <mo>|</mo>\n <mo>∇</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n </mrow>\n </mfenced>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>V</mi>\n <mo>(</mo>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>)</mo>\n <mi>u</mi>\n <mo>=</mo>\n <mi>Q</mi>\n <mo>(</mo>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>)</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>,</mo>\n </mtd>\n </mtr>\n </mtable>\n </mrow>\n <annotation>$$ -\\left(a&#x0002B;b{\\int}_{{\\mathbb{R}}&#x0005E;3}{\\left&#x0007C;\\nabla u\\right&#x0007C;}&#x0005E;2 dx\\right)\\Delta u&#x0002B;V\\left(&#x0007C;x|\\right)u&#x0003D;Q\\left(&#x0007C;x|\\right){\\left&#x0007C;u\\right&#x0007C;}&#x0005E;{p-1}u,\\kern1em x\\in {\\mathbb{R}}&#x0005E;3, $$</annotation>\n </semantics></math>\n </span><span></span></div>where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>></mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$$ a,b&gt;0,1&lt;p&lt;5 $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>,</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$$ V,Q $$</annotation>\n </semantics></math> are radial functions having the following expansions: \n\n <div><span><!--FIGURE-->\n <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>(</mo>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>)</mo>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>V</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>m</mi>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mi>θ</mi>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n <mo>,</mo>\n <mspace></mspace>\n <mi>Q</mi>\n <mo>(</mo>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>)</mo>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mi>κ</mi>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n <mspace></mspace>\n <mtext>as</mtext>\n <mspace></mspace>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$$ V\\left(&#x0007C;x|\\right)&#x0003D;{V}_0&#x0002B;\\frac{d_1}{{\\left&#x0007C;x\\right&#x0007C;}&#x0005E;m}&#x0002B;O\\left(\\frac{1}{{\\left&#x0007C;x\\right&#x0007C;}&#x0005E;{m&#x0002B;\\theta }}\\right),\\kern1em Q\\left(&#x0007C;x|\\right)&#x0003D;{Q}_0&#x0002B;\\frac{d_2}{{\\left&#x0007C;x\\right&#x0007C;}&#x0005E;n}&#x0002B;O\\left(\\frac{1}{{\\left&#x0007C;x\\right&#x0007C;}&#x0005E;{n&#x0002B;\\kappa }}\\right)\\kern0.3em \\mathrm{as}\\kern0.3em \\mid x\\mid \\to \\infty $$</annotation>\n </semantics></math>\n </span><span></span></div>with \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>V</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {V}_0,{Q}_0,\\theta, \\kappa, {d}_1&gt;0 $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ {d}_2\\in \\mathbb{R} $$</annotation>\n </semantics></math>. By introducing the Miranda theorem and developing some delicate analysis, we construct infinitely many positive nonradial multibump solutions of this equation under suitable numbers \n<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$$ m,n $$</annotation>\n </semantics></math> via the Lyapunov–Schmidt reduction method, whose maximum points lie on the top and bottom circles of a cylinder close to infinity. These nonradial multibump solutions are different from the ones obtained in a previous study. This result complements and extends the previous results in the literature.\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6830-6843"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10718","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with the existence of positive nonradial solutions to the following Kirchhoff equation:
where
and
are radial functions having the following expansions:
with
and
. By introducing the Miranda theorem and developing some delicate analysis, we construct infinitely many positive nonradial multibump solutions of this equation under suitable numbers
via the Lyapunov–Schmidt reduction method, whose maximum points lie on the top and bottom circles of a cylinder close to infinity. These nonradial multibump solutions are different from the ones obtained in a previous study. This result complements and extends the previous results in the literature.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.