{"title":"ChatGPT for complex text evaluation tasks","authors":"Mike Thelwall","doi":"10.1002/asi.24966","DOIUrl":null,"url":null,"abstract":"<p>ChatGPT and other large language models (LLMs) have been successful at natural and computer language processing tasks with varying degrees of complexity. This brief communication summarizes the lessons learned from a series of investigations into its use for the complex text analysis task of research quality evaluation. In summary, ChatGPT is very good at understanding and carrying out complex text processing tasks in the sense of producing plausible responses with minimum input from the researcher. Nevertheless, its outputs require systematic testing to assess their value because they can be misleading. In contrast to simple tasks, the outputs from complex tasks are highly varied and better results can be obtained by repeating the prompts multiple times in different sessions and averaging the ChatGPT outputs. Varying ChatGPT's configuration parameters from their defaults does not seem to be useful, except for the length of the output requested.</p>","PeriodicalId":48810,"journal":{"name":"Journal of the Association for Information Science and Technology","volume":"76 4","pages":"645-648"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asi.24966","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association for Information Science and Technology","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asi.24966","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
ChatGPT and other large language models (LLMs) have been successful at natural and computer language processing tasks with varying degrees of complexity. This brief communication summarizes the lessons learned from a series of investigations into its use for the complex text analysis task of research quality evaluation. In summary, ChatGPT is very good at understanding and carrying out complex text processing tasks in the sense of producing plausible responses with minimum input from the researcher. Nevertheless, its outputs require systematic testing to assess their value because they can be misleading. In contrast to simple tasks, the outputs from complex tasks are highly varied and better results can be obtained by repeating the prompts multiple times in different sessions and averaging the ChatGPT outputs. Varying ChatGPT's configuration parameters from their defaults does not seem to be useful, except for the length of the output requested.
期刊介绍:
The Journal of the Association for Information Science and Technology (JASIST) is a leading international forum for peer-reviewed research in information science. For more than half a century, JASIST has provided intellectual leadership by publishing original research that focuses on the production, discovery, recording, storage, representation, retrieval, presentation, manipulation, dissemination, use, and evaluation of information and on the tools and techniques associated with these processes.
The Journal welcomes rigorous work of an empirical, experimental, ethnographic, conceptual, historical, socio-technical, policy-analytic, or critical-theoretical nature. JASIST also commissions in-depth review articles (“Advances in Information Science”) and reviews of print and other media.