{"title":"Recent Advances in Narrow Emission Bandwidth Materials for Application in Organic Light-Emitting Diodes","authors":"Jihoon Kang, Dong Jin Shin, Jun Yeob Lee","doi":"10.1002/adom.202402653","DOIUrl":null,"url":null,"abstract":"<p>The preparation of narrow emission bandwidth materials is crucial for the development of advanced organic light-emitting diodes (OLEDs). In this review article, state-of-the-art methodologies used for the preparation of narrow bandwidth emitters with high color purity are summarized, and favorable design strategies are rationally organized. Currently used OLEDs have some issues, such as device stabilization that must be resolved, and color purity should also be considered. Given the recent exponential growth in the number and types of narrowband emissive organic emitters and organometallic complexes exhibiting multiple-resonance thermally activated delayed fluorescence and metal-to-ligand charge transfer characteristics, there is an urgent need to establish key technology descriptors for OLEDs with high color purity. In this review, recent developments in boron, fused indolocarbazole, carbonyl, phosphine oxide, and organometallic complexes that exhibit narrow emission spectra are described, and future directions to advance the performance of such devices are suggested.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402653","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of narrow emission bandwidth materials is crucial for the development of advanced organic light-emitting diodes (OLEDs). In this review article, state-of-the-art methodologies used for the preparation of narrow bandwidth emitters with high color purity are summarized, and favorable design strategies are rationally organized. Currently used OLEDs have some issues, such as device stabilization that must be resolved, and color purity should also be considered. Given the recent exponential growth in the number and types of narrowband emissive organic emitters and organometallic complexes exhibiting multiple-resonance thermally activated delayed fluorescence and metal-to-ligand charge transfer characteristics, there is an urgent need to establish key technology descriptors for OLEDs with high color purity. In this review, recent developments in boron, fused indolocarbazole, carbonyl, phosphine oxide, and organometallic complexes that exhibit narrow emission spectra are described, and future directions to advance the performance of such devices are suggested.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.