Yining Zhu, Huanzheng Zhu, Rongxuan Zhu, Yiwei Zhou, Min Qiu, Qiang Li
{"title":"Photon-Engineered All-Day Radiative Warming Utilizing Solar and Atmospheric Energy","authors":"Yining Zhu, Huanzheng Zhu, Rongxuan Zhu, Yiwei Zhou, Min Qiu, Qiang Li","doi":"10.1002/adom.202402432","DOIUrl":null,"url":null,"abstract":"<p>Maintaining optimal temperatures continuously is crucial for various applications, yet existing methods relying on selective solar absorbers fail to provide continuous warmth throughout the entire day. A photon-engineered flexible film is proposed for all-day radiative warming, integrating multiple functional layers to regulate radiation across different spectral bands. This design enhances the heat absorption efficiency of solar and atmospheric energy (α<sub>0.3−2.5</sub> <sub>µm</sub> = 0.95, α<sub>5−8</sub> <sub>µm</sub> = 0.75, α<sub>14−16</sub> <sub>µm</sub> = 0.84) while minimizing outward radiation (ɛ<sub>8-14</sub> <sub>µm</sub> = 0.13). Experimental validation demonstrates superior performance over traditional low-emissivity warming blankets under varying environmental conditions, achieving 9.4 °C higher temperature during the day and 1.4 °C higher at night. Moreover, the film's remarkable warming capability highlights its significant application value in anti-condensation. This underscores its potential as a sustainable and effective thermal management solution for carbon neutrality.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402432","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining optimal temperatures continuously is crucial for various applications, yet existing methods relying on selective solar absorbers fail to provide continuous warmth throughout the entire day. A photon-engineered flexible film is proposed for all-day radiative warming, integrating multiple functional layers to regulate radiation across different spectral bands. This design enhances the heat absorption efficiency of solar and atmospheric energy (α0.3−2.5µm = 0.95, α5−8µm = 0.75, α14−16µm = 0.84) while minimizing outward radiation (ɛ8-14µm = 0.13). Experimental validation demonstrates superior performance over traditional low-emissivity warming blankets under varying environmental conditions, achieving 9.4 °C higher temperature during the day and 1.4 °C higher at night. Moreover, the film's remarkable warming capability highlights its significant application value in anti-condensation. This underscores its potential as a sustainable and effective thermal management solution for carbon neutrality.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.