Rational Design and Engineering of Conducting Polymers for Chemical Enhancement in Raman Scattering

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huanhuan Zhang, Jun-Yu Dong, Xuke Tang, Naoki Kishimoto, Yunjie Deng, Hongqian Zhang, Xingxing Yu, Yuta Nakagawa, Shi-Tong Zhang, Yuji Kagotani, Motoyasu Adachi, Yuqi Zhou, Yasutaka Kitahama, Machiko Marumi, Laura Kacenauskaite, Pablo Martinez Pancorbo, Yasuteru Shigeta, Atsushi Iwasaki, Yuguang Ma, Ting-Hui Xiao, Keisuke Goda
{"title":"Rational Design and Engineering of Conducting Polymers for Chemical Enhancement in Raman Scattering","authors":"Huanhuan Zhang,&nbsp;Jun-Yu Dong,&nbsp;Xuke Tang,&nbsp;Naoki Kishimoto,&nbsp;Yunjie Deng,&nbsp;Hongqian Zhang,&nbsp;Xingxing Yu,&nbsp;Yuta Nakagawa,&nbsp;Shi-Tong Zhang,&nbsp;Yuji Kagotani,&nbsp;Motoyasu Adachi,&nbsp;Yuqi Zhou,&nbsp;Yasutaka Kitahama,&nbsp;Machiko Marumi,&nbsp;Laura Kacenauskaite,&nbsp;Pablo Martinez Pancorbo,&nbsp;Yasuteru Shigeta,&nbsp;Atsushi Iwasaki,&nbsp;Yuguang Ma,&nbsp;Ting-Hui Xiao,&nbsp;Keisuke Goda","doi":"10.1002/adom.202402673","DOIUrl":null,"url":null,"abstract":"<p>Raman scattering is characterized by the inherently weak inelastic scattering of photons, influenced by molecular vibrations or rotations. Recent advances have shifted from traditional electromagnetic enhancement methods to chemically enhanced Raman scattering, offering significant advantages. However, these advancements have typically depended on indirect and empirical models. This article introduces a systematic method for the rational design and engineering of chemical enhancement to Raman scattering. This method involves identifying promising Raman enhancers and optimizing their morphology and composition by elucidating their photochemical properties and mapping their charge-transfer pathways with target molecules using transient absorption spectroscopy (TAS), cyclic voltammetry (CV), and density functional theory (DFT) calculations. Employing this method, this work has developed a series of rationally designed Raman enhancers made from conducting polymers (CPs), such as poly(3,4-ethylenedioxythiophene) (PEDOT), with optimized morphological traits and compositions. These enhancers significantly improve surface-enhanced Raman spectroscopy (SERS), achieving a reproducible enhancement factor of up to 10<sup>6</sup>, and boost Raman lasing, with a remarkable 40-fold increase in energy conversion efficiency.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402673","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Raman scattering is characterized by the inherently weak inelastic scattering of photons, influenced by molecular vibrations or rotations. Recent advances have shifted from traditional electromagnetic enhancement methods to chemically enhanced Raman scattering, offering significant advantages. However, these advancements have typically depended on indirect and empirical models. This article introduces a systematic method for the rational design and engineering of chemical enhancement to Raman scattering. This method involves identifying promising Raman enhancers and optimizing their morphology and composition by elucidating their photochemical properties and mapping their charge-transfer pathways with target molecules using transient absorption spectroscopy (TAS), cyclic voltammetry (CV), and density functional theory (DFT) calculations. Employing this method, this work has developed a series of rationally designed Raman enhancers made from conducting polymers (CPs), such as poly(3,4-ethylenedioxythiophene) (PEDOT), with optimized morphological traits and compositions. These enhancers significantly improve surface-enhanced Raman spectroscopy (SERS), achieving a reproducible enhancement factor of up to 106, and boost Raman lasing, with a remarkable 40-fold increase in energy conversion efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信