{"title":"A Novel Fusion Framework Combining Graph Embedding Class-Based Convolutional Recurrent Attention Network with Brown Bear Optimization Algorithm for EEG-Based Parkinson’s Disease Recognition","authors":"Nalla Shirisha, Baranitharan Kannan, Padmanaban Kuppan, Loganathan Guganathan","doi":"10.1007/s12031-025-02329-4","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease recognition (PDR) involves identifying Parkinson’s disease using clinical evaluations, imaging studies, and biomarkers, focusing on early symptoms like tremors, rigidity, and bradykinesia to facilitate timely treatment. However, due to noise, variability, and the non-stationary nature of EEG signals, distinguishing PD remains a challenge. Traditional deep learning methods struggle to capture the intricate temporal and spatial dependencies in EEG data, limiting their precision. To address this, a novel fusion framework called graph embedding class-based convolutional recurrent attention network with Brown Bear Optimization Algorithm (GECCR2ANet + BBOA) is introduced for EEG-based PD recognition. Preprocessing is conducted using numerical operations and noise removal with weighted guided image filtering and entropy evaluation weighting (WGIF-EEW). Feature extraction is performed via the improved VGG19 with graph triple attention network (IVGG19-GTAN), which captures spatial and temporal dependencies in EEG data. The extracted features are classified using the graph embedding class-based convolutional recurrent attention network (GECCR2ANet), further optimized through the Brown Bear Optimization Algorithm (BBOA) to enhance classification accuracy. The model achieves 99.9% accuracy, 99.4% sensitivity, and a 99.3% F1-score on the UNM dataset, and 99.8% accuracy, 99.1% sensitivity, and 99.2% F1-score on the UC San Diego dataset, significantly outperforming existing methods. Additionally, it records an error rate of 0.5% and a computing time of 0.25 s. Previous models like 2D-MDAGTS, A-TQWT, and CWCNN achieved below 95% accuracy, while the proposed model’s 99.9% accuracy underscores its superior performance in real-world clinical applications, enhancing early PD detection and improving diagnostic efficiency.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02329-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease recognition (PDR) involves identifying Parkinson’s disease using clinical evaluations, imaging studies, and biomarkers, focusing on early symptoms like tremors, rigidity, and bradykinesia to facilitate timely treatment. However, due to noise, variability, and the non-stationary nature of EEG signals, distinguishing PD remains a challenge. Traditional deep learning methods struggle to capture the intricate temporal and spatial dependencies in EEG data, limiting their precision. To address this, a novel fusion framework called graph embedding class-based convolutional recurrent attention network with Brown Bear Optimization Algorithm (GECCR2ANet + BBOA) is introduced for EEG-based PD recognition. Preprocessing is conducted using numerical operations and noise removal with weighted guided image filtering and entropy evaluation weighting (WGIF-EEW). Feature extraction is performed via the improved VGG19 with graph triple attention network (IVGG19-GTAN), which captures spatial and temporal dependencies in EEG data. The extracted features are classified using the graph embedding class-based convolutional recurrent attention network (GECCR2ANet), further optimized through the Brown Bear Optimization Algorithm (BBOA) to enhance classification accuracy. The model achieves 99.9% accuracy, 99.4% sensitivity, and a 99.3% F1-score on the UNM dataset, and 99.8% accuracy, 99.1% sensitivity, and 99.2% F1-score on the UC San Diego dataset, significantly outperforming existing methods. Additionally, it records an error rate of 0.5% and a computing time of 0.25 s. Previous models like 2D-MDAGTS, A-TQWT, and CWCNN achieved below 95% accuracy, while the proposed model’s 99.9% accuracy underscores its superior performance in real-world clinical applications, enhancing early PD detection and improving diagnostic efficiency.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.