Providing Information Security of Vehicular Ad Hoc Networks Using the Early Detection of Malicious Nodes

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
E. Yu. Pavlenko, M. A. Pakhomov
{"title":"Providing Information Security of Vehicular Ad Hoc Networks Using the Early Detection of Malicious Nodes","authors":"E. Yu. Pavlenko,&nbsp;M. A. Pakhomov","doi":"10.3103/S0146411624700986","DOIUrl":null,"url":null,"abstract":"<p>The peculiarities of vehicular ad hoc networks (VANETs) are considered. An approach to provide information security of VANETs is proposed; its distinctive feature lies in the early detection of malicious activity of network participants. For its detection at an early stage, the parameters of the ad hoc vehicular network are represented as a time series, and the prediction of their future values and anomaly detection are carried out using machine learning methods. The proposed approach allows improving the security of intelligent transport systems.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 8","pages":"1318 - 1325"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The peculiarities of vehicular ad hoc networks (VANETs) are considered. An approach to provide information security of VANETs is proposed; its distinctive feature lies in the early detection of malicious activity of network participants. For its detection at an early stage, the parameters of the ad hoc vehicular network are represented as a time series, and the prediction of their future values and anomaly detection are carried out using machine learning methods. The proposed approach allows improving the security of intelligent transport systems.

Abstract Image

利用早期检测恶意节点提供车载自组网信息安全
考虑了车辆自组织网络(vanet)的特点。提出了一种实现VANETs信息安全的方法;它的显著特点在于能够及早发现网络参与者的恶意活动。针对其早期检测,将自组织车辆网络参数表示为时间序列,利用机器学习方法对其未来值进行预测并进行异常检测。建议的方法可以提高智能交通系统的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信