Representations of extensions of simple groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Scott Harper, Martin W. Liebeck
{"title":"Representations of extensions of simple groups","authors":"Scott Harper,&nbsp;Martin W. Liebeck","doi":"10.1007/s00013-025-02105-1","DOIUrl":null,"url":null,"abstract":"<div><p>Feit and Tits (1978) proved that a nontrivial projective representation of minimal dimension of a finite extension of a finite nonabelian simple group <i>G</i> factors through a projective representation of <i>G</i>, except for some groups of Lie type in characteristic 2; the exact exceptions for <i>G</i> were determined by Kleidman and Liebeck (1989). We generalise this result in two ways. First we consider all low-dimensional projective representations, not just those of minimal dimension. Second we consider all characteristically simple groups, not just simple groups.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 4","pages":"365 - 375"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02105-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02105-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Feit and Tits (1978) proved that a nontrivial projective representation of minimal dimension of a finite extension of a finite nonabelian simple group G factors through a projective representation of G, except for some groups of Lie type in characteristic 2; the exact exceptions for G were determined by Kleidman and Liebeck (1989). We generalise this result in two ways. First we consider all low-dimensional projective representations, not just those of minimal dimension. Second we consider all characteristically simple groups, not just simple groups.

单群的扩展表示
Feit和Tits(1978)证明了有限非贝简单群G因子通过G的射影表示的有限扩展的最小维的非平凡射影表示,除了特征2中的一些Lie型群;G的确切例外是由Kleidman和Liebeck(1989)确定的。我们用两种方式概括这个结果。首先,我们考虑所有的低维投影表示,而不仅仅是那些最小维的。其次,我们考虑所有的特征简单群,而不仅仅是简单群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信