Synthesis and evaluation of tetrahydrobenzo[cd]indole derivatives as glycogen phosphorylase inhibitors

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Panarat Arunrattiyakorn, Chanitha Juiprasert, Symeon M. Koulas, Pornthip Boonsri, Thammarat Aree, Maho Yagi-Utsumi, Koichi Kato, Demetres D. Leonidas
{"title":"Synthesis and evaluation of tetrahydrobenzo[cd]indole derivatives as glycogen phosphorylase inhibitors","authors":"Panarat Arunrattiyakorn,&nbsp;Chanitha Juiprasert,&nbsp;Symeon M. Koulas,&nbsp;Pornthip Boonsri,&nbsp;Thammarat Aree,&nbsp;Maho Yagi-Utsumi,&nbsp;Koichi Kato,&nbsp;Demetres D. Leonidas","doi":"10.1007/s00044-025-03384-7","DOIUrl":null,"url":null,"abstract":"<div><p>A series of tetrahydrobenzo[<i>cd</i>]indole derivatives was synthesized by condensation of a fungal metabolite hyphodermin A, a naphtho[1,2-<i>c</i>]furan-3,9-dione derivative, and various anilines in methanol. Using this approach, ten analogs (<b>3a</b>–<b>3j</b>) were synthesized and tested as inhibitors against glycogen phosphorylase (GP). While compounds <b>3e</b> and <b>3i</b> bearing hydrophobic bromo and trifluoromethyl groups showed moderated inhibition (<i>K</i><sub>i</sub> = 32.3–57.4 μΜ), compound <b>3g</b> with hydroxy group had the most potent activity with a <i>K</i><sub>i</sub> value of 7.9 ± 0.7 μΜ against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb-<b>3g</b> complexes revealed that this inhibitor binds at a subsite within the indole binding site of GP which has not been previously observed to bind ligands.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 4","pages":"870 - 881"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03384-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of tetrahydrobenzo[cd]indole derivatives was synthesized by condensation of a fungal metabolite hyphodermin A, a naphtho[1,2-c]furan-3,9-dione derivative, and various anilines in methanol. Using this approach, ten analogs (3a3j) were synthesized and tested as inhibitors against glycogen phosphorylase (GP). While compounds 3e and 3i bearing hydrophobic bromo and trifluoromethyl groups showed moderated inhibition (Ki = 32.3–57.4 μΜ), compound 3g with hydroxy group had the most potent activity with a Ki value of 7.9 ± 0.7 μΜ against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb-3g complexes revealed that this inhibitor binds at a subsite within the indole binding site of GP which has not been previously observed to bind ligands.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信