{"title":"SFP: temporal knowledge graph completion based on sequence-focus patterns representation learning","authors":"Jingbin Wang, XiFan Ke, FuYuan Zhang, YuWei Wu, SiRui Zhang, Kun Guo","doi":"10.1007/s10489-025-06306-7","DOIUrl":null,"url":null,"abstract":"<div><p>The extrapolation task in the temporal knowledge graph has received increasing attention from scholars due to its wide range of practical application scenarios. At present, recurrent neural networks are currently widely used in temporal knowledge graph completion techniques. These networks are employed to depict the sequential pattern of entities and relations. However, as the sequence lengthens, some critical early information may become diluted. Prediction errors ensue in the completion task as a result. Furthermore, it is observed that existing temporal knowledge graph completion methods fail to account for the topological structure of relations, which leads to relation representations with essentially little distinction across different timestamps. In order to tackle the previously mentioned concern, our research introduces a Temporal Knowledge Graph Completion Method utilizing Sequence-Focus Patterns Representation Learning (SFP). This method contains two patterns: the Focus pattern and the Sequential pattern. In the SFP model, we developed a novel graph attention network called ConvGAT. This network efficiently distinguishes and extracts complex relation information, thereby enhancing the accuracy of entity representations that are aggregated in the Focus pattern and Sequential pattern. Furthermore we proposed RelGAT, a graph attention network that simulates the topological structure of relations. This enhances the precision of relation representations and facilitates the differentiation between relation embeddings generated at various timestamps in the Focus pattern. Utilizing a time-aware attention mechanism, the Focus pattern extracts vital information at particular timestamps in order to amplify the data that the Sequential pattern dilutes. On five distinct benchmark datasets, SFP significantly outperforms the baseline, according to a comprehensive series of experiments.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06306-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The extrapolation task in the temporal knowledge graph has received increasing attention from scholars due to its wide range of practical application scenarios. At present, recurrent neural networks are currently widely used in temporal knowledge graph completion techniques. These networks are employed to depict the sequential pattern of entities and relations. However, as the sequence lengthens, some critical early information may become diluted. Prediction errors ensue in the completion task as a result. Furthermore, it is observed that existing temporal knowledge graph completion methods fail to account for the topological structure of relations, which leads to relation representations with essentially little distinction across different timestamps. In order to tackle the previously mentioned concern, our research introduces a Temporal Knowledge Graph Completion Method utilizing Sequence-Focus Patterns Representation Learning (SFP). This method contains two patterns: the Focus pattern and the Sequential pattern. In the SFP model, we developed a novel graph attention network called ConvGAT. This network efficiently distinguishes and extracts complex relation information, thereby enhancing the accuracy of entity representations that are aggregated in the Focus pattern and Sequential pattern. Furthermore we proposed RelGAT, a graph attention network that simulates the topological structure of relations. This enhances the precision of relation representations and facilitates the differentiation between relation embeddings generated at various timestamps in the Focus pattern. Utilizing a time-aware attention mechanism, the Focus pattern extracts vital information at particular timestamps in order to amplify the data that the Sequential pattern dilutes. On five distinct benchmark datasets, SFP significantly outperforms the baseline, according to a comprehensive series of experiments.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.