Isoperimetric inequalities for the fractional composite membrane problem

IF 0.5 4区 数学 Q3 MATHEMATICS
Mrityunjoy Ghosh
{"title":"Isoperimetric inequalities for the fractional composite membrane problem","authors":"Mrityunjoy Ghosh","doi":"10.1007/s00013-024-02090-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we investigate some isoperimetric-type inequalities related to the first eigenvalue of the fractional composite membrane problem. First, we establish an analogue of the renowned Faber–Krahn inequality for the fractional composite membrane problem. Next, we investigate an isoperimetric inequality for the first eigenvalue of the fractional composite membrane problem on the intersection of two domains - a problem that was first studied by Lieb (Invent Math 74(3):441–448, 1983) for the Laplacian. Similar results in the local case were previously obtained by Cupini–Vecchi (Commun Pure Appl Anal 18(5):2679–2691, 2019) for the composite membrane problem. Our findings provide further insights into the fractional setting, offering a new perspective on these classical inequalities.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 4","pages":"435 - 448"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02090-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02090-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate some isoperimetric-type inequalities related to the first eigenvalue of the fractional composite membrane problem. First, we establish an analogue of the renowned Faber–Krahn inequality for the fractional composite membrane problem. Next, we investigate an isoperimetric inequality for the first eigenvalue of the fractional composite membrane problem on the intersection of two domains - a problem that was first studied by Lieb (Invent Math 74(3):441–448, 1983) for the Laplacian. Similar results in the local case were previously obtained by Cupini–Vecchi (Commun Pure Appl Anal 18(5):2679–2691, 2019) for the composite membrane problem. Our findings provide further insights into the fractional setting, offering a new perspective on these classical inequalities.

分数复合膜问题的等周不等式
在本文中,我们研究了与分数复合膜问题第一特征值有关的一些等周型不等式。首先,我们对分数复合膜问题建立了著名的Faber-Krahn不等式的类比。接下来,我们研究了分数复合膜问题在两域交点上的第一特征值的等周不等式——这个问题最初是由Lieb (Invent Math 74(3): 441-448, 1983)为拉普拉斯算子研究的。Cupini-Vecchi (common Pure apple Anal 18(5): 2679-2691, 2019)在局部案例中也得到了类似的结果。我们的研究结果为分数设置提供了进一步的见解,为这些经典不等式提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信