Continuum Robotic Catheter Systems for Transcatheter Mitral Valve Procedures: A Technical Review

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Di Ding;Tianliang Yao;Haoyu Wang;Xusen Sun;Rong Luo
{"title":"Continuum Robotic Catheter Systems for Transcatheter Mitral Valve Procedures: A Technical Review","authors":"Di Ding;Tianliang Yao;Haoyu Wang;Xusen Sun;Rong Luo","doi":"10.1109/ACCESS.2025.3548273","DOIUrl":null,"url":null,"abstract":"Transcatheter mitral valve procedures have transformed the treatment of mitral regurgitation and stenosis by providing less invasive alternatives to conventional open-heart surgery. However, they introduce stringent requirements for catheter navigation, force modulation, and real-time imaging in a highly dynamic cardiac environment. In this article, a comprehensive technical overview of continuum robotic catheter systems developed specifically for transcatheter mitral valve interventions is presented. Fundamental design principles of flexible, tendon-driven architectures are examined, highlighting their capacity to navigate tortuous vascular pathways and offer multi-degree-of-freedom control. The integration of advanced sensing technologies, real-time imaging methods, and intelligent control strategies is discussed. Clinical studies and in vivo validations are reviewed, underscoring critical performance metrics such as positional accuracy, procedural safety, and device miniaturization. Persistent challenges are also addressed, including limited high-fidelity data for machine learning, a lack of robust haptic feedback in delicate cardiac tissue manipulation, and regulatory hurdles for complex robotic platforms. Furthermore, emerging innovations in materials science, three-dimensional printing, and sensor fusion are explored, illustrating the potential for next-generation systems that enhance precision while reducing operator workload. Finally, key opportunities for future research are outlined, with an emphasis on personalized navigation algorithms, standardized evaluation protocols, and broader applicability in cardiovascular and endovascular procedures.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"43275-43288"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10910200","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10910200/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Transcatheter mitral valve procedures have transformed the treatment of mitral regurgitation and stenosis by providing less invasive alternatives to conventional open-heart surgery. However, they introduce stringent requirements for catheter navigation, force modulation, and real-time imaging in a highly dynamic cardiac environment. In this article, a comprehensive technical overview of continuum robotic catheter systems developed specifically for transcatheter mitral valve interventions is presented. Fundamental design principles of flexible, tendon-driven architectures are examined, highlighting their capacity to navigate tortuous vascular pathways and offer multi-degree-of-freedom control. The integration of advanced sensing technologies, real-time imaging methods, and intelligent control strategies is discussed. Clinical studies and in vivo validations are reviewed, underscoring critical performance metrics such as positional accuracy, procedural safety, and device miniaturization. Persistent challenges are also addressed, including limited high-fidelity data for machine learning, a lack of robust haptic feedback in delicate cardiac tissue manipulation, and regulatory hurdles for complex robotic platforms. Furthermore, emerging innovations in materials science, three-dimensional printing, and sensor fusion are explored, illustrating the potential for next-generation systems that enhance precision while reducing operator workload. Finally, key opportunities for future research are outlined, with an emphasis on personalized navigation algorithms, standardized evaluation protocols, and broader applicability in cardiovascular and endovascular procedures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信