Segmenting Input Data to Improve the Quality of Identification of Information Security Events

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
M. E. Sukhoparov, I. S. Lebedev, D. D. Tikhonov
{"title":"Segmenting Input Data to Improve the Quality of Identification of Information Security Events","authors":"M. E. Sukhoparov,&nbsp;I. S. Lebedev,&nbsp;D. D. Tikhonov","doi":"10.3103/S0146411624700822","DOIUrl":null,"url":null,"abstract":"<p>The processing of information sequences using segmentation of input data, aimed at improving the quality indicators of destructive impact detection using machine learning models is proposed. The basis of the proposed solution is the division of data into segments with different properties of the objects of observation. A method is described that uses a multilevel data processing architecture, where the processes of training, analysis of the achieved values of quality indicators, and assignment of the best models for quality indicators to individual data segments are implemented at various levels. The proposed method allows us to improve the quality indicators of the detection of destructive information impacts through segmentation and assignment of models that have the best indicators in individual segments.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 8","pages":"1192 - 1203"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The processing of information sequences using segmentation of input data, aimed at improving the quality indicators of destructive impact detection using machine learning models is proposed. The basis of the proposed solution is the division of data into segments with different properties of the objects of observation. A method is described that uses a multilevel data processing architecture, where the processes of training, analysis of the achieved values of quality indicators, and assignment of the best models for quality indicators to individual data segments are implemented at various levels. The proposed method allows us to improve the quality indicators of the detection of destructive information impacts through segmentation and assignment of models that have the best indicators in individual segments.

Abstract Image

分割输入数据以提高信息安全事件识别的质量
提出了一种基于输入数据分割的信息序列处理方法,旨在利用机器学习模型提高破坏性冲击检测的质量指标。提出的解决方案的基础是将数据划分为具有不同观测对象属性的部分。描述了一种使用多层数据处理体系结构的方法,其中在不同级别上实现了培训过程、对质量指标实现值的分析以及将质量指标的最佳模型分配给各个数据段。所提出的方法允许我们通过分割和分配在单个片段中具有最佳指标的模型来提高破坏性信息影响检测的质量指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信