{"title":"Data-Aided Channel-Gain Calibration Algorithm for Recovering Channel Amplitude Reciprocity in SFLC-OFDM Systems","authors":"Songmin Lee;Jingon Joung;Jihoon Choi;Juyeop Kim","doi":"10.1109/ACCESS.2025.3549046","DOIUrl":null,"url":null,"abstract":"This paper proposes a practical gain calibration algorithm that estimates and compensates for channel amplitude asymmetry in a space-frequency line code (SFLC) orthogonal frequency division multiplexing (OFDM) system. During uplink (UL) communications from the base station (BS) to user equipment (UE), the SFLC BS can acquire channel state information (CSI) for downlink (DL) communications from the BS to the UE by utilizing UL-DL channel reciprocity. However, the channel amplitudes between UL and DL are generally observed to be asymmetric in practical channels. This asymmetry results in an unexpected phase rotation of the decoded SFLC symbols at the UE, as the CSI used for SFLC encoding at the BS does not align with the actual DL channels. To address this issue, we have designed a data-aided channel-gain calibration algorithm (CCA). Based on the mathematical derivation of the phase rotation of received SFLC data symbols at the UE, we developed the CCA to adjust the received gain and restore channel amplitude symmetry. To practically validate the designed CCA, we implemented an off-the-shelf SFLC-OFDM communication system on a software modem testbed using Universal Software Radio Peripherals (USRPs). Experiments conducted with real-time SFLC-OFDM signals demonstrate that the proposed CCA significantly enhances SFLC decoding performance.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"44231-44242"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916665","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916665/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a practical gain calibration algorithm that estimates and compensates for channel amplitude asymmetry in a space-frequency line code (SFLC) orthogonal frequency division multiplexing (OFDM) system. During uplink (UL) communications from the base station (BS) to user equipment (UE), the SFLC BS can acquire channel state information (CSI) for downlink (DL) communications from the BS to the UE by utilizing UL-DL channel reciprocity. However, the channel amplitudes between UL and DL are generally observed to be asymmetric in practical channels. This asymmetry results in an unexpected phase rotation of the decoded SFLC symbols at the UE, as the CSI used for SFLC encoding at the BS does not align with the actual DL channels. To address this issue, we have designed a data-aided channel-gain calibration algorithm (CCA). Based on the mathematical derivation of the phase rotation of received SFLC data symbols at the UE, we developed the CCA to adjust the received gain and restore channel amplitude symmetry. To practically validate the designed CCA, we implemented an off-the-shelf SFLC-OFDM communication system on a software modem testbed using Universal Software Radio Peripherals (USRPs). Experiments conducted with real-time SFLC-OFDM signals demonstrate that the proposed CCA significantly enhances SFLC decoding performance.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.