Boundary Technology Costs for Economic Viability of Long-Duration Energy Storage Systems in California

Patricia Silva;Alexandre Moreira;Miguel Heleno;André Luís Marques Marcato
{"title":"Boundary Technology Costs for Economic Viability of Long-Duration Energy Storage Systems in California","authors":"Patricia Silva;Alexandre Moreira;Miguel Heleno;André Luís Marques Marcato","doi":"10.1109/TEMPR.2024.3444750","DOIUrl":null,"url":null,"abstract":"The urgent need for decarbonization in the energy sector has led to an increased emphasis on the integration of renewable energy sources, such as wind and solar, into power grids. While these resources offer significant environmental benefits, they also introduce challenges related to intermittency and variability. Long-duration energy storage (LDES) technologies have emerged as a very promising solution to address these challenges by storing excess energy during periods of high generation and delivering it when demand is high or renewable resources are scarce for a sustained amount of time. This paper introduces a novel methodology for estimating the boundary technology cost of LDES systems for economic viability in decarbonized energy systems. Our methodology is applied to estimate the boundary costs in 2050 for the state of California to achieve full retirement of gas power plants. California's ambitious decarbonization goals and transition to a renewable energy-based power system present an ideal context for examining the role of LDES. The results also offer insights into the needed capacity expansion planning and the operational contribution of LDES in the California's energy landscape, taking into account the unique energy demand profiles and renewable resource availability of the region. Our findings are intended to provide complementary information to guide decision-makers, energy planners, and any other stakeholders in making informed choices about LDES investment in the context of a decarbonized energy future.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"3 1","pages":"32-45"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638215/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent need for decarbonization in the energy sector has led to an increased emphasis on the integration of renewable energy sources, such as wind and solar, into power grids. While these resources offer significant environmental benefits, they also introduce challenges related to intermittency and variability. Long-duration energy storage (LDES) technologies have emerged as a very promising solution to address these challenges by storing excess energy during periods of high generation and delivering it when demand is high or renewable resources are scarce for a sustained amount of time. This paper introduces a novel methodology for estimating the boundary technology cost of LDES systems for economic viability in decarbonized energy systems. Our methodology is applied to estimate the boundary costs in 2050 for the state of California to achieve full retirement of gas power plants. California's ambitious decarbonization goals and transition to a renewable energy-based power system present an ideal context for examining the role of LDES. The results also offer insights into the needed capacity expansion planning and the operational contribution of LDES in the California's energy landscape, taking into account the unique energy demand profiles and renewable resource availability of the region. Our findings are intended to provide complementary information to guide decision-makers, energy planners, and any other stakeholders in making informed choices about LDES investment in the context of a decarbonized energy future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信