Liujian Zhang , Zhiwen Yu , Kaixiang Yang , Bin Wang , C.L. Philip Chen
{"title":"Transferable and discriminative broad network for unsupervised domain adaptation","authors":"Liujian Zhang , Zhiwen Yu , Kaixiang Yang , Bin Wang , C.L. Philip Chen","doi":"10.1016/j.knosys.2025.113297","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain adaptation uses labeled data from a source domain to train a robust classifier for an unlabeled target domain with a distinct distribution. The Broad Learning System (BLS), known for its efficiency and effectiveness, is widely applied in classification and regression problems. This paper introduces a novel method named TD-BLS for unsupervised domain adaptation. TD-BLS combines UDA-BLSAE and discriminative BLS into an iterative network. UDA-BLSAE performs domain adaptation and data reconstruction simultaneously, balancing the preservation of intrinsic structure with the reduction of distribution discrepancy. Additionally, the discriminative BLS used in TD-BLS employs pseudo-labeling and manifold learning in the classifier stage to leverage high-confidence predictions and data geometric information. Finally, experiments on multiple public domain adaptation datasets demonstrate that our approach achieves rapid domain adaptation with higher accuracy compared to existing methods.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"315 ","pages":"Article 113297"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125003442","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised domain adaptation uses labeled data from a source domain to train a robust classifier for an unlabeled target domain with a distinct distribution. The Broad Learning System (BLS), known for its efficiency and effectiveness, is widely applied in classification and regression problems. This paper introduces a novel method named TD-BLS for unsupervised domain adaptation. TD-BLS combines UDA-BLSAE and discriminative BLS into an iterative network. UDA-BLSAE performs domain adaptation and data reconstruction simultaneously, balancing the preservation of intrinsic structure with the reduction of distribution discrepancy. Additionally, the discriminative BLS used in TD-BLS employs pseudo-labeling and manifold learning in the classifier stage to leverage high-confidence predictions and data geometric information. Finally, experiments on multiple public domain adaptation datasets demonstrate that our approach achieves rapid domain adaptation with higher accuracy compared to existing methods.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.