A finite element-based simulation of microstructure evolution through a 3D finite strain Cosserat phase-field model

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jad Doghman, Christophe Bovet, Anna Ask
{"title":"A finite element-based simulation of microstructure evolution through a 3D finite strain Cosserat phase-field model","authors":"Jad Doghman,&nbsp;Christophe Bovet,&nbsp;Anna Ask","doi":"10.1016/j.cma.2025.117900","DOIUrl":null,"url":null,"abstract":"<div><div>A computational framework for microstructure evolution in metallic polycrystals is achieved by coupling large deformation Cosserat isotropic hyperelasticity with a phase-field model to take into account grain boundary formation and motion. Each material point has an associated crystal lattice orientation described by the Cosserat microrotation, which can evolve due to deformation or grain boundary migration. The analysis is restricted to transformations in the solid state. The numerical treatment of the proposed model requires some consideration. Discretization by finite elements leads to a strongly nonlinear, coupled system. The microrotation is parametrized to facilitate the numerical treatment of incremental updates of the Cosserat degrees of freedom. In order to reduce computation time and effort, a parallel computing mechanism based on domain decomposition is adopted together with an iterative staggered scheme to avoid the ill-conditioning inherent to the monolithic coupled system of equations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117900"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001720","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A computational framework for microstructure evolution in metallic polycrystals is achieved by coupling large deformation Cosserat isotropic hyperelasticity with a phase-field model to take into account grain boundary formation and motion. Each material point has an associated crystal lattice orientation described by the Cosserat microrotation, which can evolve due to deformation or grain boundary migration. The analysis is restricted to transformations in the solid state. The numerical treatment of the proposed model requires some consideration. Discretization by finite elements leads to a strongly nonlinear, coupled system. The microrotation is parametrized to facilitate the numerical treatment of incremental updates of the Cosserat degrees of freedom. In order to reduce computation time and effort, a parallel computing mechanism based on domain decomposition is adopted together with an iterative staggered scheme to avoid the ill-conditioning inherent to the monolithic coupled system of equations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信