Data quality management in big data: Strategies, tools, and educational implications

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Thu Nguyen , Hong-Tri Nguyen , Tu-Anh Nguyen-Hoang
{"title":"Data quality management in big data: Strategies, tools, and educational implications","authors":"Thu Nguyen ,&nbsp;Hong-Tri Nguyen ,&nbsp;Tu-Anh Nguyen-Hoang","doi":"10.1016/j.jpdc.2025.105067","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical need for effective Big Data Quality Management (BDQM) in education, a field where data quality has profound implications but remains underexplored. The work systematically progresses from requirement analysis and standard development to the deployment of tools for monitoring and enhancing data quality in big data workflows. The study's contributions are substantiated through five research questions that explore the impact of data quality on analytics, the establishment of evaluation standards, centralized management strategies, improvement techniques, and education-specific BDQM adaptations. By addressing these questions, the research advances both theoretical and practical frameworks, equipping stakeholders with the tools to enhance the reliability and efficiency of data-driven educational initiatives. Integrating Artificial Intelligence (AI) and distributed computing, this research introduces a novel multi-stage BDQM framework that emphasizes data quality assessment, centralized governance, and AI-enhanced improvement techniques. This work underscores the transformative potential of robust BDQM systems in supporting informed decision-making and achieving sustainable outcomes in educational projects. The survey findings highlight the potential for automated data management within big data architectures, suggesting that data quality frameworks can be significantly enhanced by leveraging AI and distributed computing. Additionally, the survey emphasizes emerging trends in big data quality management, specifically (i) automated data cleaning and cleansing and (ii) data enrichment and augmentation.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"200 ","pages":"Article 105067"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000346","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical need for effective Big Data Quality Management (BDQM) in education, a field where data quality has profound implications but remains underexplored. The work systematically progresses from requirement analysis and standard development to the deployment of tools for monitoring and enhancing data quality in big data workflows. The study's contributions are substantiated through five research questions that explore the impact of data quality on analytics, the establishment of evaluation standards, centralized management strategies, improvement techniques, and education-specific BDQM adaptations. By addressing these questions, the research advances both theoretical and practical frameworks, equipping stakeholders with the tools to enhance the reliability and efficiency of data-driven educational initiatives. Integrating Artificial Intelligence (AI) and distributed computing, this research introduces a novel multi-stage BDQM framework that emphasizes data quality assessment, centralized governance, and AI-enhanced improvement techniques. This work underscores the transformative potential of robust BDQM systems in supporting informed decision-making and achieving sustainable outcomes in educational projects. The survey findings highlight the potential for automated data management within big data architectures, suggesting that data quality frameworks can be significantly enhanced by leveraging AI and distributed computing. Additionally, the survey emphasizes emerging trends in big data quality management, specifically (i) automated data cleaning and cleansing and (ii) data enrichment and augmentation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信