The value of MRI radiomics in distinguishing different types of spinal infections

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chao Qin , Li-ping Dai , Ye-lei Zhang , Rong-can Wu , Kai-li Du , Chun-qiang Zhang , Wen-ge Liu
{"title":"The value of MRI radiomics in distinguishing different types of spinal infections","authors":"Chao Qin ,&nbsp;Li-ping Dai ,&nbsp;Ye-lei Zhang ,&nbsp;Rong-can Wu ,&nbsp;Kai-li Du ,&nbsp;Chun-qiang Zhang ,&nbsp;Wen-ge Liu","doi":"10.1016/j.cmpb.2025.108719","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In clinical practice, the three most prevalent forms of infectious spondylitis are tuberculous spondylitis (TS), brucellosis spondylitis (BS), and pyogenic spondylitis (PS). It is possible to successfully lessen neurological and spinal damage by detecting them early. In the medical field, radiomics has been applied extensively. It is crucial to find out if MRI imaging can be used to diagnose spinal infections early.</div></div><div><h3>Purpose</h3><div>To explore the diagnostic value of establishing models based on MRI radiomics for different spinal infections.</div></div><div><h3>Methods</h3><div>This retrospective study collected clinical and magnetic resonance imaging information on a total of 136 patients diagnosed with spondylitis in April 2019 and August 2023, who were classified into specific spinal infections (TS or BS) and non-specific spinal infections (PS) based on treatment. 3D Slicer software was used to outline the region of interest (ROI) and extracted ROI features. All patients were randomly divided into a training set and a test set (7:3), and after standardized, the <em>t</em>-test and LASSO were sequentially performed in the training set to extract the optimal radiomic features. These features were used to calculate the Radscore and construct the features classifier model and evaluated by test set. Univariate and multivariate logistic regression of Radscore and clinical features to identify predictors contributing to the diagnosis were used to plot nomograms, the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA) to assess the nomogram. The same approach described above was used to diagnose both subgroups of BS and TS in SSI.</div></div><div><h3>Results</h3><div>321 radiological features were extracted from the three different sequences. The remaining 7 optimal radiomics features were used to calculate the Radscore and establish three feature classifier models, with RF having the best performance (AUC=1 and 0.86). And after univariate and multivariate logistic regression, the final nomogram constructed by Radscore and had good discriminatory performance in the training set and the test set (AUC =0.924 and 0.868), and the calibration curve and DCA showed good clinical efficacy. In the subgroup, the AUC of the training and test sets was 0.929and0.863.</div></div><div><h3>Conclusion</h3><div>The diagnostic model based on MR radiomics can gradually differentiate tuberculous spondylitis, brucellosis spondylitis, and pyogenic spondylitis.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"264 ","pages":"Article 108719"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001361","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

In clinical practice, the three most prevalent forms of infectious spondylitis are tuberculous spondylitis (TS), brucellosis spondylitis (BS), and pyogenic spondylitis (PS). It is possible to successfully lessen neurological and spinal damage by detecting them early. In the medical field, radiomics has been applied extensively. It is crucial to find out if MRI imaging can be used to diagnose spinal infections early.

Purpose

To explore the diagnostic value of establishing models based on MRI radiomics for different spinal infections.

Methods

This retrospective study collected clinical and magnetic resonance imaging information on a total of 136 patients diagnosed with spondylitis in April 2019 and August 2023, who were classified into specific spinal infections (TS or BS) and non-specific spinal infections (PS) based on treatment. 3D Slicer software was used to outline the region of interest (ROI) and extracted ROI features. All patients were randomly divided into a training set and a test set (7:3), and after standardized, the t-test and LASSO were sequentially performed in the training set to extract the optimal radiomic features. These features were used to calculate the Radscore and construct the features classifier model and evaluated by test set. Univariate and multivariate logistic regression of Radscore and clinical features to identify predictors contributing to the diagnosis were used to plot nomograms, the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA) to assess the nomogram. The same approach described above was used to diagnose both subgroups of BS and TS in SSI.

Results

321 radiological features were extracted from the three different sequences. The remaining 7 optimal radiomics features were used to calculate the Radscore and establish three feature classifier models, with RF having the best performance (AUC=1 and 0.86). And after univariate and multivariate logistic regression, the final nomogram constructed by Radscore and had good discriminatory performance in the training set and the test set (AUC =0.924 and 0.868), and the calibration curve and DCA showed good clinical efficacy. In the subgroup, the AUC of the training and test sets was 0.929and0.863.

Conclusion

The diagnostic model based on MR radiomics can gradually differentiate tuberculous spondylitis, brucellosis spondylitis, and pyogenic spondylitis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信