Piero Truini , Alessio Marrani , Michael Rios , Willem de Graaf
{"title":"Exceptional Periodicity and Magic Star algebras","authors":"Piero Truini , Alessio Marrani , Michael Rios , Willem de Graaf","doi":"10.1016/j.exmath.2024.125621","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce countably infinite series of finite dimensional generalizations of the exceptional Lie algebras: in fact, each exceptional Lie algebra (but <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) is the first element of an infinite series of finite dimensional algebras, which we name Magic Star algebras. All these algebras (but the first elements of the infinite series) are not Lie algebras, but nevertheless they have remarkable similarities with many characterizing features of the exceptional Lie algebras; they also enjoy a kind of periodicity (inherited by Bott periodicity), which we name Exceptional Periodicity. We analyze the graded algebraic structures arising in a certain projection (named Magic Star projection) of the generalized root systems pertaining to Magic Star algebras, and we highlight the occurrence of a class of rank-3, Hermitian matrix (special Vinberg T)-algebras (which we call <span><math><mi>H</mi></math></span> algebras) on each vertex of such a projection. We then focus on the Magic Star algebra <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, which generalizes the non-simply laced exceptional Lie algebra <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, and deserves a treatment apart. Finally, we compute the Lie algebra of the inner derivations of the <span><math><mi>H</mi></math></span> algebras, pointing out the enhancements occurring for each first element of the series of Magic Star algebras, thus retrieving the result known for the derivations of cubic simple Jordan algebras.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 2","pages":"Article 125621"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086924000884","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce countably infinite series of finite dimensional generalizations of the exceptional Lie algebras: in fact, each exceptional Lie algebra (but ) is the first element of an infinite series of finite dimensional algebras, which we name Magic Star algebras. All these algebras (but the first elements of the infinite series) are not Lie algebras, but nevertheless they have remarkable similarities with many characterizing features of the exceptional Lie algebras; they also enjoy a kind of periodicity (inherited by Bott periodicity), which we name Exceptional Periodicity. We analyze the graded algebraic structures arising in a certain projection (named Magic Star projection) of the generalized root systems pertaining to Magic Star algebras, and we highlight the occurrence of a class of rank-3, Hermitian matrix (special Vinberg T)-algebras (which we call algebras) on each vertex of such a projection. We then focus on the Magic Star algebra , which generalizes the non-simply laced exceptional Lie algebra , and deserves a treatment apart. Finally, we compute the Lie algebra of the inner derivations of the algebras, pointing out the enhancements occurring for each first element of the series of Magic Star algebras, thus retrieving the result known for the derivations of cubic simple Jordan algebras.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.