Optimization of irrigation and fertigation in smart agriculture: An IoT-based micro-services framework

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Tommaso Adamo , Danilo Caivano , Lucio Colizzi , Giovanni Dimauro , Emanuela Guerriero
{"title":"Optimization of irrigation and fertigation in smart agriculture: An IoT-based micro-services framework","authors":"Tommaso Adamo ,&nbsp;Danilo Caivano ,&nbsp;Lucio Colizzi ,&nbsp;Giovanni Dimauro ,&nbsp;Emanuela Guerriero","doi":"10.1016/j.atech.2025.100885","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient management of water and fertilizer resources is crucial for achieving sustainability and productivity in agriculture. This paper presents an AI-powered microservices solution that optimizes irrigation and fertigation practices. The proposed system integrates IoT nodes for real-time data collection on environmental conditions, soil moisture levels, and nutrient crop needs. Fertigation and irrigation decision-making are modeled as a data-driven sequential decision problem. At each decision stage, real-time data serve as input to an AI planning model aimed at satisfying nutrient and water demands while minimizing water and fertilizer waste. The system allows supervision by the farmer through a mobile app and a Digital Twin, enabling the design of crop planting layouts and providing detailed information on real-time decisions implemented in the field, as well as water and fertilizer consumption. The proposed solution manages diverse crop species with distinct water and nutrient requirements. Efficient data exchange is facilitated through a push-pull communication paradigm between the IoT nodes and cloud services. This approach offers several benefits, including greater control over data flow, energy savings, and increased flexibility in resource management.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100885"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient management of water and fertilizer resources is crucial for achieving sustainability and productivity in agriculture. This paper presents an AI-powered microservices solution that optimizes irrigation and fertigation practices. The proposed system integrates IoT nodes for real-time data collection on environmental conditions, soil moisture levels, and nutrient crop needs. Fertigation and irrigation decision-making are modeled as a data-driven sequential decision problem. At each decision stage, real-time data serve as input to an AI planning model aimed at satisfying nutrient and water demands while minimizing water and fertilizer waste. The system allows supervision by the farmer through a mobile app and a Digital Twin, enabling the design of crop planting layouts and providing detailed information on real-time decisions implemented in the field, as well as water and fertilizer consumption. The proposed solution manages diverse crop species with distinct water and nutrient requirements. Efficient data exchange is facilitated through a push-pull communication paradigm between the IoT nodes and cloud services. This approach offers several benefits, including greater control over data flow, energy savings, and increased flexibility in resource management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信