Thomas Flinkow , Barak A. Pearlmutter , Rosemary Monahan
{"title":"Comparing differentiable logics for learning with logical constraints","authors":"Thomas Flinkow , Barak A. Pearlmutter , Rosemary Monahan","doi":"10.1016/j.scico.2025.103280","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive research on formal verification of machine learning systems indicates that learning from data alone often fails to capture underlying background knowledge, such as specifications implicitly available in the data. Various neural network verifiers have been developed to ensure that a machine-learnt model satisfies correctness and safety properties; however, they typically assume a trained network with fixed weights. A promising approach for creating machine learning models that inherently satisfy constraints after training is to encode background knowledge as explicit logical constraints that guide the learning process via so-called differentiable logics. In this paper, we experimentally compare and evaluate various logics from the literature, present our findings, and highlight open problems for future work. We evaluate differentiable logics with respect to their suitability in training, and use a neural network verifier to check their ability to establish formal guarantees. The complete source code for our experiments is available as an easy-to-use framework for training with differentiable logics at <span><span>https://github.com/tflinkow/comparing-differentiable-logics</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"244 ","pages":"Article 103280"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016764232500019X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research on formal verification of machine learning systems indicates that learning from data alone often fails to capture underlying background knowledge, such as specifications implicitly available in the data. Various neural network verifiers have been developed to ensure that a machine-learnt model satisfies correctness and safety properties; however, they typically assume a trained network with fixed weights. A promising approach for creating machine learning models that inherently satisfy constraints after training is to encode background knowledge as explicit logical constraints that guide the learning process via so-called differentiable logics. In this paper, we experimentally compare and evaluate various logics from the literature, present our findings, and highlight open problems for future work. We evaluate differentiable logics with respect to their suitability in training, and use a neural network verifier to check their ability to establish formal guarantees. The complete source code for our experiments is available as an easy-to-use framework for training with differentiable logics at https://github.com/tflinkow/comparing-differentiable-logics.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.