A review of the application prospects of cloud-edge-end collaborative technology in freshwater aquaculture

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jihao Wang , Xiaochan Wang , Yinyan Shi , Haihui Yang , Bo Jia , Xiaolei Zhang , Lebin Lin
{"title":"A review of the application prospects of cloud-edge-end collaborative technology in freshwater aquaculture","authors":"Jihao Wang ,&nbsp;Xiaochan Wang ,&nbsp;Yinyan Shi ,&nbsp;Haihui Yang ,&nbsp;Bo Jia ,&nbsp;Xiaolei Zhang ,&nbsp;Lebin Lin","doi":"10.1016/j.aiia.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reviews the application and potential of cloud-edge-end collaborative (CEEC) technology in the field of freshwater aquaculture, a rapidly developing sector driven by the growing global demand for aquatic products. The sustainable development of freshwater aquaculture has become a critical challenge due to issues such as water pollution and inefficient resource utilization in traditional farming methods. In response to these challenges, the integration of smart technologies has emerged as a promising solution to improve both efficiency and sustainability. Cloud computing and edge computing, when combined, form the backbone of CEEC technology, offering an innovative approach that can significantly enhance aquaculture practices. By leveraging the strengths of both technologies, CEEC enables efficient data processing through cloud infrastructure and real-time responsiveness via edge computing, making it a compelling solution for modern aquaculture. This review explores the key applications of CEEC in areas such as environmental monitoring, intelligent feeding systems, health management, and product traceability. The ability of CEEC technology to optimize the aquaculture environment, enhance product quality, and boost overall farming efficiency highlights its potential to become a mainstream solution in the industry. Furthermore, the paper discusses the limitations and challenges that need to be addressed in order to fully realize the potential of CEEC in freshwater aquaculture. In conclusion, this paper provides researchers and practitioners with valuable insights into the current state of CEEC technology in aquaculture, offering suggestions for future development and optimization to further enhance its contributions to the sustainable growth of freshwater aquaculture.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 232-251"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews the application and potential of cloud-edge-end collaborative (CEEC) technology in the field of freshwater aquaculture, a rapidly developing sector driven by the growing global demand for aquatic products. The sustainable development of freshwater aquaculture has become a critical challenge due to issues such as water pollution and inefficient resource utilization in traditional farming methods. In response to these challenges, the integration of smart technologies has emerged as a promising solution to improve both efficiency and sustainability. Cloud computing and edge computing, when combined, form the backbone of CEEC technology, offering an innovative approach that can significantly enhance aquaculture practices. By leveraging the strengths of both technologies, CEEC enables efficient data processing through cloud infrastructure and real-time responsiveness via edge computing, making it a compelling solution for modern aquaculture. This review explores the key applications of CEEC in areas such as environmental monitoring, intelligent feeding systems, health management, and product traceability. The ability of CEEC technology to optimize the aquaculture environment, enhance product quality, and boost overall farming efficiency highlights its potential to become a mainstream solution in the industry. Furthermore, the paper discusses the limitations and challenges that need to be addressed in order to fully realize the potential of CEEC in freshwater aquaculture. In conclusion, this paper provides researchers and practitioners with valuable insights into the current state of CEEC technology in aquaculture, offering suggestions for future development and optimization to further enhance its contributions to the sustainable growth of freshwater aquaculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信