A complete invariant system for noetherian BL-algebras and more general L-algebras

IF 0.6 2区 数学 Q2 LOGIC
Wolfgang Rump
{"title":"A complete invariant system for noetherian BL-algebras and more general L-algebras","authors":"Wolfgang Rump","doi":"10.1016/j.apal.2025.103580","DOIUrl":null,"url":null,"abstract":"<div><div>Main results on <em>BL</em>-algebras, including their classification in the finite case, are reconsidered and extended to a class of <em>L</em>-algebras <em>X</em> with prime factorization, including <em>BL</em>-algebras with ascending chain condition for its lattice. The weighted forest associated with a finite <em>BL</em>-algebra reappears as a canonical <em>L</em>-subalgebra <span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of prime elements in the self-similar closure <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> where <span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is completely determined by its underlying poset (not necessarily a forest), while the weights are associated with existing powers of the prime elements in <em>X</em>. These invariants determine <em>X</em> within its self-similar closure <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>S</mi><mo>(</mo><mover><mrow><mi>P</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></math></span>. The three basic types of <em>BL</em>-algebras are related to concepts of <em>L</em>-algebras with further-reaching significance in quantum theory.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 7","pages":"Article 103580"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Main results on BL-algebras, including their classification in the finite case, are reconsidered and extended to a class of L-algebras X with prime factorization, including BL-algebras with ascending chain condition for its lattice. The weighted forest associated with a finite BL-algebra reappears as a canonical L-subalgebra P˜(X) of prime elements in the self-similar closure S(X) where P˜(X) is completely determined by its underlying poset (not necessarily a forest), while the weights are associated with existing powers of the prime elements in X. These invariants determine X within its self-similar closure S(X)=S(P˜(X)). The three basic types of BL-algebras are related to concepts of L-algebras with further-reaching significance in quantum theory.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信