Adam Zizien , Chiara Galdi , Karel Fliegel , Jean-Luc Dugelay
{"title":"Lost in light field compression: Understanding the unseen pitfalls in computer vision","authors":"Adam Zizien , Chiara Galdi , Karel Fliegel , Jean-Luc Dugelay","doi":"10.1016/j.image.2025.117304","DOIUrl":null,"url":null,"abstract":"<div><div>Could we be overlooking a fundamental aspect of light fields in our quest for efficient compression? The vast amount of data enclosed in a light field makes compression a necessity. Yet, from an application point of view, the focus is predominantly on visual consumption while light fields have properties that can potentially be used in various other tasks. This paper examines the impact of light field compression on the performance of subsequent computer vision tasks. We investigate the variations in quality across perspectives and their impact on face recognition systems and disparity estimation. By leveraging a diverse dataset of light field images, we thoroughly evaluate the performance of various face recognition algorithms when subjected to different conventional and learning-based compression techniques, such as JPEG Pleno, ALVC, and SADN-QVRF. Our findings reveal a noticeable decline in peak recognition performance as compression levels increase, given specific recognition frameworks. Furthermore, we identify a significant shift in the recognition threshold, particularly in response to higher degrees of compression. Secondly, by relying on a novel disparity estimation algorithm, we explore the loss of information across light field perspectives. Our results highlight a disconnect between the preservation of visual fidelity and the loss of minute detail crucial for the preservation of disparity information in light field images. The findings presented herein aim to contribute to the development of efficient compression strategies while emphasizing the delicate balance between compression efficiency, subjective quality, and feature preservation with the aim of increased accuracy in specialized light field systems.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"136 ","pages":"Article 117304"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Could we be overlooking a fundamental aspect of light fields in our quest for efficient compression? The vast amount of data enclosed in a light field makes compression a necessity. Yet, from an application point of view, the focus is predominantly on visual consumption while light fields have properties that can potentially be used in various other tasks. This paper examines the impact of light field compression on the performance of subsequent computer vision tasks. We investigate the variations in quality across perspectives and their impact on face recognition systems and disparity estimation. By leveraging a diverse dataset of light field images, we thoroughly evaluate the performance of various face recognition algorithms when subjected to different conventional and learning-based compression techniques, such as JPEG Pleno, ALVC, and SADN-QVRF. Our findings reveal a noticeable decline in peak recognition performance as compression levels increase, given specific recognition frameworks. Furthermore, we identify a significant shift in the recognition threshold, particularly in response to higher degrees of compression. Secondly, by relying on a novel disparity estimation algorithm, we explore the loss of information across light field perspectives. Our results highlight a disconnect between the preservation of visual fidelity and the loss of minute detail crucial for the preservation of disparity information in light field images. The findings presented herein aim to contribute to the development of efficient compression strategies while emphasizing the delicate balance between compression efficiency, subjective quality, and feature preservation with the aim of increased accuracy in specialized light field systems.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.