Memcapacitive Spiking Neurons and Associative Memory Application

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
S. J. Dat Tran
{"title":"Memcapacitive Spiking Neurons and Associative Memory Application","authors":"S. J. Dat Tran","doi":"10.1109/ACCESS.2025.3549357","DOIUrl":null,"url":null,"abstract":"The Hodgkin and Huxley neuron model describes the complex behavior of biological neurons. However, due to the complexity of these computations, the Hodgkin and Huxley models are impractical for use in large-scale networks. In contrast, Izhikevich introduced a simpler model capable of producing various firing patterns typical of cortical neurons. This study proposes a novel model of memcapacitive-based neurons that offers a potential implementation of spiking neurons with energy efficiency due to the inherent storage nature of memcapacitive devices. The findings demonstrate that memcapacitive neurons can produce 23 firing patterns similar to Izhikevich neurons but at significantly higher firing rates. Memcapacitive neurons exhibit firing patterns associated with excitatory, inhibitory, and thalamocortical neurons. Similar to Izhikevich neurons, pulse-coupled neural networks of memcapacitive neurons display collective behaviors, such as synchronous and asynchronous responses, which are common in the biological brain. Compared to Hopfield and Izhikevich networks in content-addressable memory applications, memcapacitive networks successfully retrieved correct memory patterns with high accuracy, even for distorted inputs of up to 40%. The simulation results illustrate that the novel model of the memcapacitive spiking neuron offers a potential advancement in implementing artificial spiking neurons with high energy efficiency, bringing a step closer to mimicking biological neurons.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"43933-43946"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916667","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916667/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Hodgkin and Huxley neuron model describes the complex behavior of biological neurons. However, due to the complexity of these computations, the Hodgkin and Huxley models are impractical for use in large-scale networks. In contrast, Izhikevich introduced a simpler model capable of producing various firing patterns typical of cortical neurons. This study proposes a novel model of memcapacitive-based neurons that offers a potential implementation of spiking neurons with energy efficiency due to the inherent storage nature of memcapacitive devices. The findings demonstrate that memcapacitive neurons can produce 23 firing patterns similar to Izhikevich neurons but at significantly higher firing rates. Memcapacitive neurons exhibit firing patterns associated with excitatory, inhibitory, and thalamocortical neurons. Similar to Izhikevich neurons, pulse-coupled neural networks of memcapacitive neurons display collective behaviors, such as synchronous and asynchronous responses, which are common in the biological brain. Compared to Hopfield and Izhikevich networks in content-addressable memory applications, memcapacitive networks successfully retrieved correct memory patterns with high accuracy, even for distorted inputs of up to 40%. The simulation results illustrate that the novel model of the memcapacitive spiking neuron offers a potential advancement in implementing artificial spiking neurons with high energy efficiency, bringing a step closer to mimicking biological neurons.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信