Role of the third composition and its A-site cation off-centering mechanism in ternary BiFeO3‒BaTiO3-based piezoelectric ceramics

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyunwook Nam , Sangwook Kim , Ichiro Fujii , Motoki Aruga , Shintaro Ueno , Yoshihiro Kuroiwa , Satoshi Wada
{"title":"Role of the third composition and its A-site cation off-centering mechanism in ternary BiFeO3‒BaTiO3-based piezoelectric ceramics","authors":"Hyunwook Nam ,&nbsp;Sangwook Kim ,&nbsp;Ichiro Fujii ,&nbsp;Motoki Aruga ,&nbsp;Shintaro Ueno ,&nbsp;Yoshihiro Kuroiwa ,&nbsp;Satoshi Wada","doi":"10.1016/j.scriptamat.2025.116637","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary BiFeO<sub>3</sub>‒BaTiO<sub>3</sub> (BFBT)-based ceramics often exhibit a higher piezoelectricity compared to binary BFBT ceramics. However, the origin of the enhanced piezoelectricity in ternary ceramics remains unclear. In this study, we investigated the role of the third composition by examining the pseudo-cubic symmetry of Bi(Mg<sub>0.5</sub>Ti<sub>0.5</sub>)O<sub>3</sub> (BMT)-modified BFBT piezoelectric ceramics using high-energy synchrotron radiation X-ray diffraction and the Rietveld method. Our experimental results validate the critical influence of Bi ion off-centering displacement, as the largest Bi ion off-centering displacement at a specific third composition demonstrates the highest piezoelectric properties. The displacement of Bi ions varies with the Bi-O covalent bond length and repulsive interactions between the off-centered Bi and B-site cations. This study highlights the importance of the ionic radii of the B-site cations in the third composition for high-performance BFBT-based piezoelectric ceramics.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"262 ","pages":"Article 116637"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary BiFeO3‒BaTiO3 (BFBT)-based ceramics often exhibit a higher piezoelectricity compared to binary BFBT ceramics. However, the origin of the enhanced piezoelectricity in ternary ceramics remains unclear. In this study, we investigated the role of the third composition by examining the pseudo-cubic symmetry of Bi(Mg0.5Ti0.5)O3 (BMT)-modified BFBT piezoelectric ceramics using high-energy synchrotron radiation X-ray diffraction and the Rietveld method. Our experimental results validate the critical influence of Bi ion off-centering displacement, as the largest Bi ion off-centering displacement at a specific third composition demonstrates the highest piezoelectric properties. The displacement of Bi ions varies with the Bi-O covalent bond length and repulsive interactions between the off-centered Bi and B-site cations. This study highlights the importance of the ionic radii of the B-site cations in the third composition for high-performance BFBT-based piezoelectric ceramics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信