CIAO: A machine-learning algorithm for mapping Arctic Ocean Chlorophyll-a from space

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Maria Laura Zoffoli , Vittorio Brando , Gianluca Volpe , Luis González Vilas , Bede Ffinian Rowe Davies , Robert Frouin , Jaime Pitarch , Simon Oiry , Jing Tan , Simone Colella , Christian Marchese
{"title":"CIAO: A machine-learning algorithm for mapping Arctic Ocean Chlorophyll-a from space","authors":"Maria Laura Zoffoli ,&nbsp;Vittorio Brando ,&nbsp;Gianluca Volpe ,&nbsp;Luis González Vilas ,&nbsp;Bede Ffinian Rowe Davies ,&nbsp;Robert Frouin ,&nbsp;Jaime Pitarch ,&nbsp;Simon Oiry ,&nbsp;Jing Tan ,&nbsp;Simone Colella ,&nbsp;Christian Marchese","doi":"10.1016/j.srs.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean color (OC) remote sensing at a Pan-Arctic scale, with over 27 years of continuous daily data, provides critical insights into long-term trends and seasonal variability in phytoplankton abundance, indexed by Chlorophyll-a concentration (Chl-a). However, existing satellite algorithms for retrieving Chl-a in the Arctic Ocean (AO) exhibit significant limitations, including high uncertainties and inconsistent accuracy across different regions, which propagate errors in primary production estimates and biogeochemical models. In this study, we quantified the uncertainties of seven existing algorithms using harmonized, merged multi-sensor satellite remote sensing reflectance (Rrs) data from the ESA Climate Change Initiative (CCI) spanning 1998–2023. The existing algorithms exhibited varying performance, with Mean Absolute Differences (MAD) ranging from 0.8 to 4.2 mg m<sup>−3</sup>. To improve these results, we developed CIAO (<strong>C</strong>hlorophyll In the <strong>A</strong>rctic <strong>O</strong>cean), a machine learning-based algorithm specifically designed for AO waters and trained with satellite Rrs data. The CIAO algorithm uses Rrs at four spectral bands (443, 490, 510 and 560 nm) and Day-Of-Year (DOY) to account for seasonal variations in bio-optical relationships. CIAO significantly outperformed seven existing algorithms, achieving a MAD of 0.5 mg m<sup>−3</sup>, thereby improving Chl-a retrievals by at least 30%, compared to the best-performing existing algorithm. Furthermore, CIAO produced consistent spatial patterns without artifacts and provided more reliable Chl-a estimates in coastal waters, where other algorithms tend to overestimate. This enhanced the accuracy of seasonal variability tracking at a Pan-Arctic scale. By strengthening the precision of satellite-derived Chl-a estimates, CIAO contributes to more accurate ecological assessments and robust climate projections for the rapidly changing AO.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100212"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean color (OC) remote sensing at a Pan-Arctic scale, with over 27 years of continuous daily data, provides critical insights into long-term trends and seasonal variability in phytoplankton abundance, indexed by Chlorophyll-a concentration (Chl-a). However, existing satellite algorithms for retrieving Chl-a in the Arctic Ocean (AO) exhibit significant limitations, including high uncertainties and inconsistent accuracy across different regions, which propagate errors in primary production estimates and biogeochemical models. In this study, we quantified the uncertainties of seven existing algorithms using harmonized, merged multi-sensor satellite remote sensing reflectance (Rrs) data from the ESA Climate Change Initiative (CCI) spanning 1998–2023. The existing algorithms exhibited varying performance, with Mean Absolute Differences (MAD) ranging from 0.8 to 4.2 mg m−3. To improve these results, we developed CIAO (Chlorophyll In the Arctic Ocean), a machine learning-based algorithm specifically designed for AO waters and trained with satellite Rrs data. The CIAO algorithm uses Rrs at four spectral bands (443, 490, 510 and 560 nm) and Day-Of-Year (DOY) to account for seasonal variations in bio-optical relationships. CIAO significantly outperformed seven existing algorithms, achieving a MAD of 0.5 mg m−3, thereby improving Chl-a retrievals by at least 30%, compared to the best-performing existing algorithm. Furthermore, CIAO produced consistent spatial patterns without artifacts and provided more reliable Chl-a estimates in coastal waters, where other algorithms tend to overestimate. This enhanced the accuracy of seasonal variability tracking at a Pan-Arctic scale. By strengthening the precision of satellite-derived Chl-a estimates, CIAO contributes to more accurate ecological assessments and robust climate projections for the rapidly changing AO.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信