Shaimaa K. El-Baklish, Anastasios Kouvelas, Michail A. Makridis
{"title":"Driving towards stability and efficiency: A variable time gap strategy for Adaptive Cruise Control","authors":"Shaimaa K. El-Baklish, Anastasios Kouvelas, Michail A. Makridis","doi":"10.1016/j.trc.2025.105074","DOIUrl":null,"url":null,"abstract":"<div><div>Automated vehicle technologies offer a promising avenue for enhancing traffic efficiency, safety, and energy consumption. Among these, Adaptive Cruise Control (ACC) systems stand out as a prevalent form of automation on today’s roads, with their time gap settings holding paramount importance. While decreasing the average time headway tends to enhance traffic capacity, it simultaneously raises concerns regarding safety and string stability. This study introduces a novel variable time gap feedback control policy aimed at striking a balance between maintaining a minimum time gap setting under equilibrium car-following conditions, thereby improving traffic capacity, while ensuring string stability to mitigate disturbances away from the equilibrium flow. Leveraging nonlinear <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control technique, the strategy employs a variable time gap component as the manipulated control signal, complemented by a constant time gap component that predominates during car-following equilibrium. The effectiveness of the proposed scheme is evaluated against its constant time-gap counterpart calibrated using field platoon data from the OpenACC dataset. Through numerical and traffic simulations, our findings illustrate that the proposed algorithm effectively dampens perturbations within vehicle platoons, leading to a more efficient and safer mixed traffic flow.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"174 ","pages":"Article 105074"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000786","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Automated vehicle technologies offer a promising avenue for enhancing traffic efficiency, safety, and energy consumption. Among these, Adaptive Cruise Control (ACC) systems stand out as a prevalent form of automation on today’s roads, with their time gap settings holding paramount importance. While decreasing the average time headway tends to enhance traffic capacity, it simultaneously raises concerns regarding safety and string stability. This study introduces a novel variable time gap feedback control policy aimed at striking a balance between maintaining a minimum time gap setting under equilibrium car-following conditions, thereby improving traffic capacity, while ensuring string stability to mitigate disturbances away from the equilibrium flow. Leveraging nonlinear control technique, the strategy employs a variable time gap component as the manipulated control signal, complemented by a constant time gap component that predominates during car-following equilibrium. The effectiveness of the proposed scheme is evaluated against its constant time-gap counterpart calibrated using field platoon data from the OpenACC dataset. Through numerical and traffic simulations, our findings illustrate that the proposed algorithm effectively dampens perturbations within vehicle platoons, leading to a more efficient and safer mixed traffic flow.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.