Mechanical properties of stabilized soil: study on recovered field samples from deep stabilization sites

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Ida-Maria E. Savila , Leena K. Korkiala-Tanttu , Juha A. Forsman , Monica S. Löfman
{"title":"Mechanical properties of stabilized soil: study on recovered field samples from deep stabilization sites","authors":"Ida-Maria E. Savila ,&nbsp;Leena K. Korkiala-Tanttu ,&nbsp;Juha A. Forsman ,&nbsp;Monica S. Löfman","doi":"10.1016/j.trgeo.2025.101540","DOIUrl":null,"url":null,"abstract":"<div><div>Recovery of field samples provides unique information about the strength and the long-term functionality of deep stabilized soil in actual transportation infrastructures. This paper presents the results of uniaxial compressive tests for the stabilized field samples of two railway sites and one street site located in Finland. Based on the research findings, there is considerable variation in the shear strength of the field samples, with coefficients of variation (COV) ranging from 0.12 to 0.61. However, the average strengths across all sites achieved their target values set during design. The results demonstrate a significant increase in strength over time, especially at the older research sites. In a railway site where deep stabilization was performed 3.5 years ago, the average shear strength of the stabilization was 797 kPa, which is more than seven times greater than the target strength for the stabilized columns. The relationships between shear strength and deformation ratios for the columns and soil surrounding the columns exceed the assumed ratio values presented in the guidelines of Finnish Transport Infrastructure Agency (FTIA), which present a value of less than 20 for completed stabilization. Based on the results of all sites, the deformation ratio between columns and clay was found to be as much as 101. This result implies that the stress concentrates more on the columns than assumed in the FTIA’s guidelines. Nevertheless, the structures have performed well without any visible differences in settlement or other damages.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101540"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000595","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Recovery of field samples provides unique information about the strength and the long-term functionality of deep stabilized soil in actual transportation infrastructures. This paper presents the results of uniaxial compressive tests for the stabilized field samples of two railway sites and one street site located in Finland. Based on the research findings, there is considerable variation in the shear strength of the field samples, with coefficients of variation (COV) ranging from 0.12 to 0.61. However, the average strengths across all sites achieved their target values set during design. The results demonstrate a significant increase in strength over time, especially at the older research sites. In a railway site where deep stabilization was performed 3.5 years ago, the average shear strength of the stabilization was 797 kPa, which is more than seven times greater than the target strength for the stabilized columns. The relationships between shear strength and deformation ratios for the columns and soil surrounding the columns exceed the assumed ratio values presented in the guidelines of Finnish Transport Infrastructure Agency (FTIA), which present a value of less than 20 for completed stabilization. Based on the results of all sites, the deformation ratio between columns and clay was found to be as much as 101. This result implies that the stress concentrates more on the columns than assumed in the FTIA’s guidelines. Nevertheless, the structures have performed well without any visible differences in settlement or other damages.
稳定土的力学特性:深层稳定现场回收样品的研究
现场样品的回收为实际交通基础设施中深层稳定土的强度和长期功能提供了独特的信息。本文介绍了芬兰两个铁路场地和一个街道场地稳定样的单轴压缩试验结果。研究结果表明,现场试样抗剪强度存在较大差异,变异系数(COV)范围为0.12 ~ 0.61。然而,所有站点的平均强度都达到了设计时设定的目标值。结果表明,随着时间的推移,强度显著增加,尤其是在较老的研究地点。在某铁路现场进行深度稳定3.5年,稳定柱的平均抗剪强度为797 kPa,是稳定柱目标强度的7倍以上。柱和柱周围土壤的抗剪强度和变形比之间的关系超过了芬兰交通基础设施局(FTIA)指导方针中提出的假设比率值,该指导方针为完全稳定提供了小于20的值。根据各站点的结果,柱与粘土之间的变形比高达101。这一结果意味着压力更多地集中在柱子上,而不是在FTIA的指导方针中假设的那样。然而,结构表现良好,没有任何明显的沉降差异或其他损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信