Quantum mechanical moduli field

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. Gengor , O.K. Celebi , A.S.K. Mohammed , H. Sehitoglu
{"title":"Quantum mechanical moduli field","authors":"G. Gengor ,&nbsp;O.K. Celebi ,&nbsp;A.S.K. Mohammed ,&nbsp;H. Sehitoglu","doi":"10.1016/j.actamat.2025.120922","DOIUrl":null,"url":null,"abstract":"<div><div>To understand the role of defects in materials science, ranging from mechanical to physical properties, determining the spatial variation of elastic moduli is of paramount importance. Using electron wavefunctions, we derive novel expressions for local elastic moduli in the lattice scale, Quantum Mechanical Moduli Field (QMMF). The QMMF provides insight into the interplay between elastic properties and defects. To derive QMMF, we differentiate the local stress density against strain. The QMMF has contributions from kinetic, exchange-correlation, and electrostatic interactions. We provide novel expressions and numerical schemes to calculate QMMF. In atomistic calculations, the atoms are modeled as point-like entities, which only allows the macroscopic elastic properties to be calculated. Since the QMMF represents the local elastic properties, it provides a significant advancement from previous studies, especially in the presence of multi-elements. Four example applications of QMMF are provided. Firstly, the macroscopic elastic moduli of Ni and B2NiTi are calculated using QMMF in agreement with experiments. Secondly, a H interstitial in Ni is considered. The effect of H concentration on H softening is evaluated. Thirdly, the effect of dilatation on moduli is calculated, revealing the non-linearity of moduli. Finally, the local elastic properties around W solute in the Ni matrix are calculated. The W solute increases the macroscopic moduli of Ni in a non-linear fashion. It is found that the macroscopic hardening is due to the hardening of the Ni matrix rather than W solutes forming hard-spots. The QMMF uses electron densities to unveil such surprising effects that are otherwise unobservable.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120922"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002149","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the role of defects in materials science, ranging from mechanical to physical properties, determining the spatial variation of elastic moduli is of paramount importance. Using electron wavefunctions, we derive novel expressions for local elastic moduli in the lattice scale, Quantum Mechanical Moduli Field (QMMF). The QMMF provides insight into the interplay between elastic properties and defects. To derive QMMF, we differentiate the local stress density against strain. The QMMF has contributions from kinetic, exchange-correlation, and electrostatic interactions. We provide novel expressions and numerical schemes to calculate QMMF. In atomistic calculations, the atoms are modeled as point-like entities, which only allows the macroscopic elastic properties to be calculated. Since the QMMF represents the local elastic properties, it provides a significant advancement from previous studies, especially in the presence of multi-elements. Four example applications of QMMF are provided. Firstly, the macroscopic elastic moduli of Ni and B2NiTi are calculated using QMMF in agreement with experiments. Secondly, a H interstitial in Ni is considered. The effect of H concentration on H softening is evaluated. Thirdly, the effect of dilatation on moduli is calculated, revealing the non-linearity of moduli. Finally, the local elastic properties around W solute in the Ni matrix are calculated. The W solute increases the macroscopic moduli of Ni in a non-linear fashion. It is found that the macroscopic hardening is due to the hardening of the Ni matrix rather than W solutes forming hard-spots. The QMMF uses electron densities to unveil such surprising effects that are otherwise unobservable.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信