Real-Time Photocatalytic Measurement of Dental Materials in an Open System.

M-Y Lee, H-W Yoon, H Cai, S-J Shin, J-S Kwon
{"title":"Real-Time Photocatalytic Measurement of Dental Materials in an Open System.","authors":"M-Y Lee, H-W Yoon, H Cai, S-J Shin, J-S Kwon","doi":"10.1177/00220345251319320","DOIUrl":null,"url":null,"abstract":"<p><p>It is common to encounter discrepancies between in vitro and in vivo studies, particularly when assessing the antibiofilm efficacy of dental materials. Typically, dental materials are tested in a closed system where fresh nutrients are not replenished, the test conditions are static, and the same planktonic bacteria persist. However, real environments are characterized by the continuous supply of fresh nutrients, dynamic saliva flow, and the periodic removal of planktonic bacteria through swallowing. To address these differences, we used an open system approach using microfluidic chips that simulate the nutrient and fluid flow conditions of the mouth. This setup enables the spatiotemporal development of biofilms, facilitates real-time observation, and provides deeper insights into the biofilm formation and removal processes. Photocatalytic dental materials are particularly suitable for use with microfluidic chips, as these devices allow real-time tracking of biofilm dynamics, both with and without light exposure. Nitrogen-doped titanium dioxide effectively produces reactive oxygen species (ROS) under visible light conditions, even when embedded in a resin matrix. These ROS have been shown to inhibit <i>Enterococcus faecalis</i> biofilms. The evaluation of the photocatalytic effects of dental materials using microfluidic chips showed that both new and established biofilms were disrupted by ROS production. ROS weakens the interface between the biofilm and dental material, allowing the biofilm mass to be removed by fluid flow. Furthermore, the open system provided by microfluidic chips demonstrated higher accuracy in evaluating antibiofilm efficiency than the conventional system did. Thus, the developed microfluidic chip is a novel and promising tool for assessing antibiofilm properties, with potential applications in various fields.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345251319320"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345251319320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is common to encounter discrepancies between in vitro and in vivo studies, particularly when assessing the antibiofilm efficacy of dental materials. Typically, dental materials are tested in a closed system where fresh nutrients are not replenished, the test conditions are static, and the same planktonic bacteria persist. However, real environments are characterized by the continuous supply of fresh nutrients, dynamic saliva flow, and the periodic removal of planktonic bacteria through swallowing. To address these differences, we used an open system approach using microfluidic chips that simulate the nutrient and fluid flow conditions of the mouth. This setup enables the spatiotemporal development of biofilms, facilitates real-time observation, and provides deeper insights into the biofilm formation and removal processes. Photocatalytic dental materials are particularly suitable for use with microfluidic chips, as these devices allow real-time tracking of biofilm dynamics, both with and without light exposure. Nitrogen-doped titanium dioxide effectively produces reactive oxygen species (ROS) under visible light conditions, even when embedded in a resin matrix. These ROS have been shown to inhibit Enterococcus faecalis biofilms. The evaluation of the photocatalytic effects of dental materials using microfluidic chips showed that both new and established biofilms were disrupted by ROS production. ROS weakens the interface between the biofilm and dental material, allowing the biofilm mass to be removed by fluid flow. Furthermore, the open system provided by microfluidic chips demonstrated higher accuracy in evaluating antibiofilm efficiency than the conventional system did. Thus, the developed microfluidic chip is a novel and promising tool for assessing antibiofilm properties, with potential applications in various fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信