Upregulated FSP1 by GPD1/1L mediated lipid droplet accumulation enhances ferroptosis resistance and peritoneal metastasis in gastric cancer.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Guoliang Lin, Qingnan Liu, Chengjie Xie, Ke Ding, Guanghua Mo, Lu Zeng, Fan Zhang, RuiXuan Liu, Lei Lu, Wei Hong, Yuling Mao, Haibo Su, Shuai Li
{"title":"Upregulated FSP1 by GPD1/1L mediated lipid droplet accumulation enhances ferroptosis resistance and peritoneal metastasis in gastric cancer.","authors":"Guoliang Lin, Qingnan Liu, Chengjie Xie, Ke Ding, Guanghua Mo, Lu Zeng, Fan Zhang, RuiXuan Liu, Lei Lu, Wei Hong, Yuling Mao, Haibo Su, Shuai Li","doi":"10.1186/s12964-025-02126-x","DOIUrl":null,"url":null,"abstract":"<p><p>To successfully metastasize, cancer cells must evade detachment induced cell death, known as anoikis. Unraveling the mechanisms that gastric cancer (GC) circumvent anoikis and achieve peritoneal metastasis especially during unanchored growth, could significantly improve patient outcomes. Our study reveals that GC cells exhibit increased lipid peroxidation, MDA production, and cell death during suspension culture, which can be mitigated by the intervention with liproxstatin-1 and ferrostatin-1. We discovered that oleic acid (OA) or adipocytes stimulate lipid accumulation in GC cells, thereby inhibiting lipid peroxidation and cell death. Lipid mass spectrometry confirmed an upregulation of triglyceride synthesis, indicating that the accumulation of lipid droplet may confer resistance to ferroptosis during suspension growth. In vitro assays demonstrated that OA not only induces lipid droplet accumulation but also upregulates the expression of ferroptosis suppressor protein 1 (FSP1), a process that can be abrogated by the double knockout of GPD1/1L genes. Additionally, we have demonstrated that a decrease in the ubiquitination of FSP1 in GC cells upon lipid droplet accumulation, as well as silencing or pharmacological targeting FSP1, promotes ferroptosis and disrupts the peritoneal metastatic potential of GC cells. Collectively, our findings highlight the potential of FSP1 as a promising therapeutic target for metastatic gastric cancer.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"132"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02126-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To successfully metastasize, cancer cells must evade detachment induced cell death, known as anoikis. Unraveling the mechanisms that gastric cancer (GC) circumvent anoikis and achieve peritoneal metastasis especially during unanchored growth, could significantly improve patient outcomes. Our study reveals that GC cells exhibit increased lipid peroxidation, MDA production, and cell death during suspension culture, which can be mitigated by the intervention with liproxstatin-1 and ferrostatin-1. We discovered that oleic acid (OA) or adipocytes stimulate lipid accumulation in GC cells, thereby inhibiting lipid peroxidation and cell death. Lipid mass spectrometry confirmed an upregulation of triglyceride synthesis, indicating that the accumulation of lipid droplet may confer resistance to ferroptosis during suspension growth. In vitro assays demonstrated that OA not only induces lipid droplet accumulation but also upregulates the expression of ferroptosis suppressor protein 1 (FSP1), a process that can be abrogated by the double knockout of GPD1/1L genes. Additionally, we have demonstrated that a decrease in the ubiquitination of FSP1 in GC cells upon lipid droplet accumulation, as well as silencing or pharmacological targeting FSP1, promotes ferroptosis and disrupts the peritoneal metastatic potential of GC cells. Collectively, our findings highlight the potential of FSP1 as a promising therapeutic target for metastatic gastric cancer.

GPD1/1L介导的脂滴积累上调FSP1可增强胃癌对铁下垂的抵抗和腹膜转移。
为了成功转移,癌细胞必须避免脱离诱导的细胞死亡,即所谓的细胞坏死。揭示胃癌(GC)绕过anokiis并实现腹膜转移的机制,特别是在无锚定生长期间,可以显著改善患者的预后。我们的研究表明,GC细胞在悬浮培养过程中表现出脂质过氧化、MDA生成和细胞死亡的增加,这可以通过利普司他汀-1和他汀铁-1干预来缓解。我们发现油酸(OA)或脂肪细胞刺激GC细胞中的脂质积累,从而抑制脂质过氧化和细胞死亡。脂质谱法证实了甘油三酯合成的上调,表明脂滴的积累可能在悬浮生长期间赋予对铁下垂的抗性。体外实验表明,OA不仅可以诱导脂滴积累,还可以上调铁凋亡抑制蛋白1 (FSP1)的表达,这一过程可以通过双敲除GPD1/1L基因来消除。此外,我们已经证明,脂滴积聚时GC细胞中FSP1泛素化的降低,以及FSP1的沉默或药物靶向,促进了铁下垂并破坏了GC细胞的腹膜转移潜能。总的来说,我们的研究结果强调了FSP1作为转移性胃癌有希望的治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信