Fatty acid metabolism shapes immune responses in chronic lymphocytic leukemia.

IF 9.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yang Zhang, Jun Ma, Peipei Li, Kang Lu, Yang Han, Xinting Hu, Xiaosheng Fang, Xin Wang, Ya Zhang
{"title":"Fatty acid metabolism shapes immune responses in chronic lymphocytic leukemia.","authors":"Yang Zhang, Jun Ma, Peipei Li, Kang Lu, Yang Han, Xinting Hu, Xiaosheng Fang, Xin Wang, Ya Zhang","doi":"10.1186/s40364-025-00753-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fatty acids serve as a crucial energy source for tumor cells during the progression of chronic lymphocytic leukemia (CLL). The present study aims to elucidate the characteristics of fatty acid metabolism (FAM) in CLL, construct a related prognostic score, and investigate the regulatory role and mechanisms of FAM in CLL development.</p><p><strong>Methods: </strong>Bulk RNA sequencing data from CLL patients and healthy controls were analyzed to identify differentially expressed fatty acid metabolic genes. FAM-score was constructed using Cox-LASSO regression and validated. Single-cell RNA sequencing was used to analyze the expression of key FAM genes in CLL immune cell subsets and investigate cellular communication. Functional assays, including cell viability, drug sensitivity, and oxygen consumption assays, were performed to assess the impact of fatty acid oxidation (FAO) inhibition on CLL cells.</p><p><strong>Results: </strong>Three FAM-related genes (LPL, SOCS3, CNR1) were identified with independent prognostic significance to construct the risk score. The FAM-score demonstrated superior prognostic performance compared to the Binet stage and was associated with established clinical prognostic markers. Single-cell analysis revealed distinct expression patterns of LPL, SOCS3, and CNR1 across CLL immune cell subsets. Cellular communication analysis highlighted the regulatory role of distinct B cell and Treg subsets in the CLL microenvironment. CLL patients with high FAM-score displayed distinct immune infiltration patterns, with increased FAO pathway activity. Inhibition of FAO reduced CLL cell viability, synergistically enhanced the efficacy of the PI3K inhibitor idelalisib.</p><p><strong>Conclusion: </strong>The present study constructed a prognostic risk score based on FAM gene expression, revealing related immune phenotypic differences and exploring the regulatory role of FAO in CLL development. Targeting fatty acid metabolism potentially modulates the CLL immune microenvironment and synergistically enhances the efficacy of PI3K inhibitors.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"42"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00753-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fatty acids serve as a crucial energy source for tumor cells during the progression of chronic lymphocytic leukemia (CLL). The present study aims to elucidate the characteristics of fatty acid metabolism (FAM) in CLL, construct a related prognostic score, and investigate the regulatory role and mechanisms of FAM in CLL development.

Methods: Bulk RNA sequencing data from CLL patients and healthy controls were analyzed to identify differentially expressed fatty acid metabolic genes. FAM-score was constructed using Cox-LASSO regression and validated. Single-cell RNA sequencing was used to analyze the expression of key FAM genes in CLL immune cell subsets and investigate cellular communication. Functional assays, including cell viability, drug sensitivity, and oxygen consumption assays, were performed to assess the impact of fatty acid oxidation (FAO) inhibition on CLL cells.

Results: Three FAM-related genes (LPL, SOCS3, CNR1) were identified with independent prognostic significance to construct the risk score. The FAM-score demonstrated superior prognostic performance compared to the Binet stage and was associated with established clinical prognostic markers. Single-cell analysis revealed distinct expression patterns of LPL, SOCS3, and CNR1 across CLL immune cell subsets. Cellular communication analysis highlighted the regulatory role of distinct B cell and Treg subsets in the CLL microenvironment. CLL patients with high FAM-score displayed distinct immune infiltration patterns, with increased FAO pathway activity. Inhibition of FAO reduced CLL cell viability, synergistically enhanced the efficacy of the PI3K inhibitor idelalisib.

Conclusion: The present study constructed a prognostic risk score based on FAM gene expression, revealing related immune phenotypic differences and exploring the regulatory role of FAO in CLL development. Targeting fatty acid metabolism potentially modulates the CLL immune microenvironment and synergistically enhances the efficacy of PI3K inhibitors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarker Research
Biomarker Research Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍: Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信