Jurissa Lang, Andres Bernal, Julien Wist, Siobhon Egan, Sze How Bong, Oscar Millet, Monique Ryan, Aude-Claire Lee, Drew Hall, Philipp Nitschke, Reika Masuda, Allison Imrie, Elaine Holmes, Jeremy Nicholson, Ruey Leng Loo
{"title":"Longitudinal study on immunologic, lipoproteomic, and inflammatory responses indicates the safety of sequential COVID-19 vaccination.","authors":"Jurissa Lang, Andres Bernal, Julien Wist, Siobhon Egan, Sze How Bong, Oscar Millet, Monique Ryan, Aude-Claire Lee, Drew Hall, Philipp Nitschke, Reika Masuda, Allison Imrie, Elaine Holmes, Jeremy Nicholson, Ruey Leng Loo","doi":"10.1007/s00109-025-02527-y","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 vaccines are crucial in reducing SARS-CoV-2 transmission and severe health outcomes. Despite widespread administration, their long-term systemic effects on human metabolism remain inadequately understood. This longitudinal study aims to evaluate IgG responses, 34 cytokines, 112 lipoproteins, and 21 low-molecular-weight metabolites in 33 individuals receiving two to four COVID-19 vaccine doses. Changes in metabolic profiles for the first 16 days post each dose of vaccine, and up to 480 days post-initial dose, were compared to baseline (before vaccination). Additionally, metabolic profiles of vaccinated participants were compared to a reference cohort of unvaccinated individuals without prior exposure to SARS-CoV-2 infection (controls) and SARS-CoV-2 cases. Positive IgG responses were observed in 78.8% (N = 26) of participants after the first dose, reaching 100% with subsequent doses. The most common side effects were localized pain at the injection site and \"flu-like\" symptoms, reported by > 50% of participants. Systemic side effects, e.g., sore lymph nodes, fatigue, and brain fog, were reported but showed no significant correlations to IgG responses. Transient temporal changes were observed for cytokine IP10 (CXCL10) and glutamic acid around the third vaccine dose. Compared to the reference cohort, 497 vaccinated samples (95.0%) had profiles similar to the controls, while the remaining 26 samples with prior infection exposures were similar to mild cases of SARS-CooV-2 infection. In conclusion, COVID-19 vaccination did not induce lasting changes in inflammatory and metabolic responses, nor did it induce changes similar to mild cases of SARS-CoV-2 infection. This supports the metabolic safety of the vaccine and contributes to increased vaccine confidence. KEY MESSAGES: Minimal changes in inflammatory/metabolic markers up to 480 days post-vaccination. Transient increase in IP10 (CXCL10) and glutamic acid around the third dose. Post-vaccination IgG response did not alter metabolic profiles like SARS-CoV-2 cases. Our findings provide insights into the safety of repeated COVID-19 vaccinations.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02527-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 vaccines are crucial in reducing SARS-CoV-2 transmission and severe health outcomes. Despite widespread administration, their long-term systemic effects on human metabolism remain inadequately understood. This longitudinal study aims to evaluate IgG responses, 34 cytokines, 112 lipoproteins, and 21 low-molecular-weight metabolites in 33 individuals receiving two to four COVID-19 vaccine doses. Changes in metabolic profiles for the first 16 days post each dose of vaccine, and up to 480 days post-initial dose, were compared to baseline (before vaccination). Additionally, metabolic profiles of vaccinated participants were compared to a reference cohort of unvaccinated individuals without prior exposure to SARS-CoV-2 infection (controls) and SARS-CoV-2 cases. Positive IgG responses were observed in 78.8% (N = 26) of participants after the first dose, reaching 100% with subsequent doses. The most common side effects were localized pain at the injection site and "flu-like" symptoms, reported by > 50% of participants. Systemic side effects, e.g., sore lymph nodes, fatigue, and brain fog, were reported but showed no significant correlations to IgG responses. Transient temporal changes were observed for cytokine IP10 (CXCL10) and glutamic acid around the third vaccine dose. Compared to the reference cohort, 497 vaccinated samples (95.0%) had profiles similar to the controls, while the remaining 26 samples with prior infection exposures were similar to mild cases of SARS-CooV-2 infection. In conclusion, COVID-19 vaccination did not induce lasting changes in inflammatory and metabolic responses, nor did it induce changes similar to mild cases of SARS-CoV-2 infection. This supports the metabolic safety of the vaccine and contributes to increased vaccine confidence. KEY MESSAGES: Minimal changes in inflammatory/metabolic markers up to 480 days post-vaccination. Transient increase in IP10 (CXCL10) and glutamic acid around the third dose. Post-vaccination IgG response did not alter metabolic profiles like SARS-CoV-2 cases. Our findings provide insights into the safety of repeated COVID-19 vaccinations.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.