LLM-IE: a python package for biomedical generative information extraction with large language models.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-03-12 eCollection Date: 2025-04-01 DOI:10.1093/jamiaopen/ooaf012
Enshuo Hsu, Kirk Roberts
{"title":"LLM-IE: a python package for biomedical generative information extraction with large language models.","authors":"Enshuo Hsu, Kirk Roberts","doi":"10.1093/jamiaopen/ooaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Despite the recent adoption of large language models (LLMs) for biomedical information extraction (IE), challenges in prompt engineering and algorithms persist, with no dedicated software available. To address this, we developed <i>LLM-IE</i>: a Python package for building complete IE pipelines.</p><p><strong>Materials and methods: </strong>The <i>LLM-IE</i> supports named entity recognition, entity attribute extraction, and relation extraction tasks. We benchmarked it on the i2b2 clinical datasets.</p><p><strong>Results: </strong>The sentence-based prompting algorithm resulted in the best 8-shot performance of over 70% strict F1 for entity extraction and about 60% F1 for entity attribute extraction.</p><p><strong>Discussion: </strong>We developed a Python package, <i>LLM-IE,</i> highlighting (1) an interactive LLM agent to support schema definition and prompt design, (2) state-of-the-art prompting algorithms, and (3) visualization features.</p><p><strong>Conclusion: </strong>The <i>LLM-IE</i> provides essential building blocks for developing robust information extraction pipelines. Future work will aim to expand its features and further optimize computational efficiency.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 2","pages":"ooaf012"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Despite the recent adoption of large language models (LLMs) for biomedical information extraction (IE), challenges in prompt engineering and algorithms persist, with no dedicated software available. To address this, we developed LLM-IE: a Python package for building complete IE pipelines.

Materials and methods: The LLM-IE supports named entity recognition, entity attribute extraction, and relation extraction tasks. We benchmarked it on the i2b2 clinical datasets.

Results: The sentence-based prompting algorithm resulted in the best 8-shot performance of over 70% strict F1 for entity extraction and about 60% F1 for entity attribute extraction.

Discussion: We developed a Python package, LLM-IE, highlighting (1) an interactive LLM agent to support schema definition and prompt design, (2) state-of-the-art prompting algorithms, and (3) visualization features.

Conclusion: The LLM-IE provides essential building blocks for developing robust information extraction pipelines. Future work will aim to expand its features and further optimize computational efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信