Quang Huy Nguyen, Thi Van Anh Nguyen, Anne-Laure Bañuls
{"title":"Multi-drug resistance and compensatory mutations in Mycobacterium tuberculosis in Vietnam.","authors":"Quang Huy Nguyen, Thi Van Anh Nguyen, Anne-Laure Bañuls","doi":"10.1111/tmi.14104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vietnam is a hotspot for the emergence and spread of multidrug-resistant Mycobacterium tuberculosis. This study aimed to perform a retrospective study on the compensatory evolution in multidrug-resistant M. tuberculosis strains and the association with drug-resistant mutations and M. tuberculosis genotypes.</p><p><strong>Methods: </strong>Hundred and seventy-three strains resistant to rifampicin (n = 126) and/or isoniazid (n = 170) (multidrug-resistant = 123) were selected according to different drug-resistant patterns and genotypes. The genes/promoter regions including rpoA, rpoB, rpoC, katG, inhA, inhA promoter, ahpC, ahpC promoter, gyrA, gyrB, and rrs were sequenced for each strain.</p><p><strong>Results: </strong>Frequency of rifampicin- and isoniazid-resistant mutations in multidrug-resistant strains was 99.2% and 97.0%, respectively. Mutations associated with low -high levels of drug resistance with low- or no-fitness costs compared to the wild type, including rpoB_Ser450Leu, katG_Ser315Thr, inhA-15(A-T), gyrA_Asp94Gly, and rrs_A1401GA, accounted for 46.3%, 76.4%, 16.2%, 8.9%, and 11.4%, respectively, in the multidrug-resistant strains. Beijing and Euro-American genotype strains were associated with high-level drug-resistant mutations, rpoB_Ser450Leu, katG_Ser315Thr, and gyrA_Asp94Gly, while East African-Indian genotype strains were associated with low to high-level drug-resistant mutations, rpoB_His445Asp, rpoB_His445Tyr, inhA-15(C-T) and rrs_A1401G. Multidrug-resistant strains (19.5%) harboured compensatory mutations linked to rifampicin resistance in rpoA, rpoB, or rpoC. Notably, the frequency of compensatory mutations in Beijing genotypes was significantly higher than in East African-Indian genotypes (21.1% vs. 3.3%, OR = 7.7; 95% CI = 1.0 to 61.2, p = 0.03). The proportion of multidrug-resistant strains with rpoB_Ser450Leu mutations carrying rpoA-rpoC mutations was higher than that of strains with other rpoB mutations (OR = 5.4; 95% CI = 1.4 to 21.1, p = 0.02) and was associated with Beijing strains. Only 1.2% (2/170) isoniazid-resistant strains carried aphC-52(C-T) mutation in the promoter region of the ahpC gene, which was hypothesised to be the compensatory mutation in isoniazid-resistant strains. Meanwhile, 11 isoniazid-resistant strains carried a katG mutation combined with either inhA-8(T-C) or inhA-15(A-T) mutations and were associated with East African-Indian strains.</p><p><strong>Conclusions: </strong>Mutations associated with high levels of drug resistance without/with low fitness costs (rpoB_Ser450Leu and katG_Ser315Thr) along with compensatory mutations linked to rifampicin resistance were strongly associated with multidrug-resistant M. tuberculosis Beijing strains in Vietnam.</p>","PeriodicalId":23962,"journal":{"name":"Tropical Medicine & International Health","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine & International Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/tmi.14104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Vietnam is a hotspot for the emergence and spread of multidrug-resistant Mycobacterium tuberculosis. This study aimed to perform a retrospective study on the compensatory evolution in multidrug-resistant M. tuberculosis strains and the association with drug-resistant mutations and M. tuberculosis genotypes.
Methods: Hundred and seventy-three strains resistant to rifampicin (n = 126) and/or isoniazid (n = 170) (multidrug-resistant = 123) were selected according to different drug-resistant patterns and genotypes. The genes/promoter regions including rpoA, rpoB, rpoC, katG, inhA, inhA promoter, ahpC, ahpC promoter, gyrA, gyrB, and rrs were sequenced for each strain.
Results: Frequency of rifampicin- and isoniazid-resistant mutations in multidrug-resistant strains was 99.2% and 97.0%, respectively. Mutations associated with low -high levels of drug resistance with low- or no-fitness costs compared to the wild type, including rpoB_Ser450Leu, katG_Ser315Thr, inhA-15(A-T), gyrA_Asp94Gly, and rrs_A1401GA, accounted for 46.3%, 76.4%, 16.2%, 8.9%, and 11.4%, respectively, in the multidrug-resistant strains. Beijing and Euro-American genotype strains were associated with high-level drug-resistant mutations, rpoB_Ser450Leu, katG_Ser315Thr, and gyrA_Asp94Gly, while East African-Indian genotype strains were associated with low to high-level drug-resistant mutations, rpoB_His445Asp, rpoB_His445Tyr, inhA-15(C-T) and rrs_A1401G. Multidrug-resistant strains (19.5%) harboured compensatory mutations linked to rifampicin resistance in rpoA, rpoB, or rpoC. Notably, the frequency of compensatory mutations in Beijing genotypes was significantly higher than in East African-Indian genotypes (21.1% vs. 3.3%, OR = 7.7; 95% CI = 1.0 to 61.2, p = 0.03). The proportion of multidrug-resistant strains with rpoB_Ser450Leu mutations carrying rpoA-rpoC mutations was higher than that of strains with other rpoB mutations (OR = 5.4; 95% CI = 1.4 to 21.1, p = 0.02) and was associated with Beijing strains. Only 1.2% (2/170) isoniazid-resistant strains carried aphC-52(C-T) mutation in the promoter region of the ahpC gene, which was hypothesised to be the compensatory mutation in isoniazid-resistant strains. Meanwhile, 11 isoniazid-resistant strains carried a katG mutation combined with either inhA-8(T-C) or inhA-15(A-T) mutations and were associated with East African-Indian strains.
Conclusions: Mutations associated with high levels of drug resistance without/with low fitness costs (rpoB_Ser450Leu and katG_Ser315Thr) along with compensatory mutations linked to rifampicin resistance were strongly associated with multidrug-resistant M. tuberculosis Beijing strains in Vietnam.
期刊介绍:
Tropical Medicine & International Health is published on behalf of the London School of Hygiene and Tropical Medicine, Swiss Tropical and Public Health Institute, Foundation Tropical Medicine and International Health, Belgian Institute of Tropical Medicine and Bernhard-Nocht-Institute for Tropical Medicine. Tropical Medicine & International Health is the official journal of the Federation of European Societies for Tropical Medicine and International Health (FESTMIH).