{"title":"Synergistic antibacterial effects of pinaverium bromide and oxacillin against <i>Staphylococcus epidermidis</i>.","authors":"Lehong Yuan, Pengfei She","doi":"10.11817/j.issn.1672-7347.2024.240109","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong><i>Staphylococcus epidermidis</i> (<i>S. epidermidis</i>) adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against <i>S. epidermidis</i> and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a <i>L</i>-type calcium channel blocker, and oxacillin (OXA) against <i>S. epidermidis</i>.</p><p><strong>Methods: </strong>Clinical isolates of <i>S. epidermidis</i> were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University. The minimal inhibitory concentrations (MICs) of PVB and OXA were determined using the broth microdilution method. Checkerboard assays and time-kill curves were performed to assess the fractional inhibitory concentration index and synergistic bactericidal efficiency of the drug combination. Resistance selection assays evaluated PVB's ability to inhibit the development of OXA resistance. Biofilm eradication assays, combined with confocal laser scanning microscopy (CLSM) and the persister cell quantification, were conducted to evaluate the effect of PVB and OXA on drug-resistant biofilms and persister cells. The mechanisms of PVB action were further investigated using transmission electronic microscopy (TEM), reactive oxygen species (ROS) quantification, and ATP quantification.</p><p><strong>Results: </strong>The MICs of PVB and OXA against the standard strain <i>S. epidermidis</i> RP62A were both 8 μg/mL. Checkerboard assays showed that the fractional inhibitory concentration index (FICI) for the combination was 0.250 0 for RP62A and ranged from 0.187 5 to 0.500 0 for clinical isolates, indicating synergistic effects. Resistance selection assays demonstrated that PVB not only failed to induce resistance but also effectively inhibited the development of OXA resistance. The combination of 1×MIC of PVB and OXA reduced biofilm biomass (A<sub>570 nm</sub>) from (2.36±0.46) to (1.12±0.39) (<i>t</i>=3.504, <i>P</i>=0.02). CLSM revealed significant biofilm structural disruption and an increased proportion of dead bacteria. Additionally, after 4 hours of treatment, the total persister cell count was reduced from lg(7.73±0.21) to lg(2.79±0.43) (<i>t</i>=4.143, <i>P</i>=0.014). Synergistic biofilm eradication was further confirmed in clinical isolates. TEM revealed that PVB caused significant bacterial structural damage. The combination of OXA and PVB significantly induced ROS production, increasing the relative fluorescence intensity from (30 000.00±2 000.00) to (45 666.67±2 081.67) (<i>t</i>=10.68, <i>P</i><0.001), and markedly reduced ATP generation, lowering the relative fluorescence intensity form (565.00±33.18) to (205.67±35.23) (<i>t</i>=4.932, <i>P</i>=0.003).</p><p><strong>Conclusions: </strong>The combination of PVB and OXA exhibits significant synergistic antimicrobial activity against <i>S. epidermidis</i>, its biofilms, and persister cells. This combination holds promise as a potential alternative therapy for biofilm-associated infections caused by <i>S. epidermidis</i>.</p>","PeriodicalId":39801,"journal":{"name":"中南大学学报(医学版)","volume":"49 10","pages":"1601-1610"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中南大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11817/j.issn.1672-7347.2024.240109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Staphylococcus epidermidis (S. epidermidis) adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against S. epidermidis and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a L-type calcium channel blocker, and oxacillin (OXA) against S. epidermidis.
Methods: Clinical isolates of S. epidermidis were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University. The minimal inhibitory concentrations (MICs) of PVB and OXA were determined using the broth microdilution method. Checkerboard assays and time-kill curves were performed to assess the fractional inhibitory concentration index and synergistic bactericidal efficiency of the drug combination. Resistance selection assays evaluated PVB's ability to inhibit the development of OXA resistance. Biofilm eradication assays, combined with confocal laser scanning microscopy (CLSM) and the persister cell quantification, were conducted to evaluate the effect of PVB and OXA on drug-resistant biofilms and persister cells. The mechanisms of PVB action were further investigated using transmission electronic microscopy (TEM), reactive oxygen species (ROS) quantification, and ATP quantification.
Results: The MICs of PVB and OXA against the standard strain S. epidermidis RP62A were both 8 μg/mL. Checkerboard assays showed that the fractional inhibitory concentration index (FICI) for the combination was 0.250 0 for RP62A and ranged from 0.187 5 to 0.500 0 for clinical isolates, indicating synergistic effects. Resistance selection assays demonstrated that PVB not only failed to induce resistance but also effectively inhibited the development of OXA resistance. The combination of 1×MIC of PVB and OXA reduced biofilm biomass (A570 nm) from (2.36±0.46) to (1.12±0.39) (t=3.504, P=0.02). CLSM revealed significant biofilm structural disruption and an increased proportion of dead bacteria. Additionally, after 4 hours of treatment, the total persister cell count was reduced from lg(7.73±0.21) to lg(2.79±0.43) (t=4.143, P=0.014). Synergistic biofilm eradication was further confirmed in clinical isolates. TEM revealed that PVB caused significant bacterial structural damage. The combination of OXA and PVB significantly induced ROS production, increasing the relative fluorescence intensity from (30 000.00±2 000.00) to (45 666.67±2 081.67) (t=10.68, P<0.001), and markedly reduced ATP generation, lowering the relative fluorescence intensity form (565.00±33.18) to (205.67±35.23) (t=4.932, P=0.003).
Conclusions: The combination of PVB and OXA exhibits significant synergistic antimicrobial activity against S. epidermidis, its biofilms, and persister cells. This combination holds promise as a potential alternative therapy for biofilm-associated infections caused by S. epidermidis.
期刊介绍:
Journal of Central South University (Medical Sciences), founded in 1958, is a comprehensive academic journal of medicine and health sponsored by the Ministry of Education and Central South University. The journal has been included in many important databases and authoritative abstract journals at home and abroad, such as the American Medline, Pubmed and its Index Medicus (IM), the Netherlands Medical Abstracts (EM), the American Chemical Abstracts (CA), the WHO Western Pacific Region Medical Index (WPRIM), and the Chinese Science Citation Database (Core Database) (CSCD); it is a statistical source journal of Chinese scientific and technological papers, a Chinese core journal, and a "double-effect" journal of the Chinese Journal Matrix; it is the "2nd, 3rd, and 4th China University Excellent Science and Technology Journal", "2008 China Excellent Science and Technology Journal", "RCCSE China Authoritative Academic Journal (A+)" and Hunan Province's "Top Ten Science and Technology Journals". The purpose of the journal is to reflect the new achievements, new technologies, and new experiences in medical research, medical treatment, and teaching, report new medical trends at home and abroad, promote academic exchanges, improve academic standards, and promote scientific and technological progress.