Retrieval Augmented Medical Diagnosis System.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf017
Ethan Thomas Johnson, Jathin Koushal Bande, Johnson Thomas
{"title":"Retrieval Augmented Medical Diagnosis System.","authors":"Ethan Thomas Johnson, Jathin Koushal Bande, Johnson Thomas","doi":"10.1093/biomethods/bpaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Subjective variability in human interpretation of diagnostic imaging presents significant clinical limitations, potentially resulting in diagnostic errors and increased healthcare costs. While artificial intelligence (AI) algorithms offer promising solutions to reduce interpreter subjectivity, they frequently demonstrate poor generalizability across different healthcare settings. To address these issues, we introduce Retrieval Augmented Medical Diagnosis System (RAMDS), which integrates an AI classification model with a similar image model. This approach retrieves historical cases and their diagnoses to provide context for the AI predictions. By weighing similar image diagnoses alongside AI predictions, RAMDS produces a final weighted prediction, aiding physicians in understanding the diagnosis process. Moreover, RAMDS does not require complete retraining when applied to new datasets; rather, it simply necessitates re-calibration of the weighing system. When RAMDS fine-tuned for negative predictive value was evaluated on breast ultrasounds for cancer classification, RAMDS improved sensitivity by 21% and negative predictive value by 9% compared to ResNet-34. Offering enhanced metrics, explainability, and adaptability, RAMDS represents a notable advancement in medical AI. RAMDS is a new approach in medical AI that has the potential for pan-pathological uses, though further research is needed to optimize its performance and integrate multimodal data.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf017"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Subjective variability in human interpretation of diagnostic imaging presents significant clinical limitations, potentially resulting in diagnostic errors and increased healthcare costs. While artificial intelligence (AI) algorithms offer promising solutions to reduce interpreter subjectivity, they frequently demonstrate poor generalizability across different healthcare settings. To address these issues, we introduce Retrieval Augmented Medical Diagnosis System (RAMDS), which integrates an AI classification model with a similar image model. This approach retrieves historical cases and their diagnoses to provide context for the AI predictions. By weighing similar image diagnoses alongside AI predictions, RAMDS produces a final weighted prediction, aiding physicians in understanding the diagnosis process. Moreover, RAMDS does not require complete retraining when applied to new datasets; rather, it simply necessitates re-calibration of the weighing system. When RAMDS fine-tuned for negative predictive value was evaluated on breast ultrasounds for cancer classification, RAMDS improved sensitivity by 21% and negative predictive value by 9% compared to ResNet-34. Offering enhanced metrics, explainability, and adaptability, RAMDS represents a notable advancement in medical AI. RAMDS is a new approach in medical AI that has the potential for pan-pathological uses, though further research is needed to optimize its performance and integrate multimodal data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信