A feasibility study of automating radiotherapy planning with large language model agents.

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Qingxin Wang, Zhongqiu Wang, Minghua Li, Xinye Ni, Rong Tan, Wenwen Zhang, Maitudi Wubulaishan, Wei Wang, Zhiyong Yuan, Zhen Zhang, Cong Liu
{"title":"A feasibility study of automating radiotherapy planning with large language model agents.","authors":"Qingxin Wang, Zhongqiu Wang, Minghua Li, Xinye Ni, Rong Tan, Wenwen Zhang, Maitudi Wubulaishan, Wei Wang, Zhiyong Yuan, Zhen Zhang, Cong Liu","doi":"10.1088/1361-6560/adbff1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Radiotherapy planning requires significant expertise to balance tumor control and organ-at-risk (OAR) sparing. Automated planning can improve both efficiency and quality. This study introduces GPT-Plan, a novel multi-agent system powered by the GPT-4 family of large language models (LLMs), for automating the iterative radiotherapy plan optimization.<i>Approach.</i>GPT-Plan uses LLM-driven agents, mimicking the collaborative clinical workflow of a dosimetrist and physicist, to iteratively generate and evaluate text-based radiotherapy plans based on predefined criteria. Supporting tools assist the agents by leveraging historical plans, mitigating LLM hallucinations, and balancing exploration and exploitation. Performance was evaluated on 12 lung (IMRT) and 5 cervical (VMAT) cancer cases, benchmarked against the ECHO auto-planning method and manual plans. The impact of historical plan retrieval on efficiency was also assessed.<i>Results.</i>For IMRT lung cancer cases, GPT-Plan generated high-quality plans, demonstrating superior target coverage and homogeneity compared to ECHO while maintaining comparable or better OAR sparing. For VMAT cervical cancer cases, plan quality was comparable to a senior physicist and consistently superior to a junior physicist, particularly for OAR sparing. Retrieving historical plans significantly reduced the number of required optimization iterations for lung cases (<i>p</i> < 0.01) and yielded iteration counts comparable to those of the senior physicist for cervical cases (<i>p</i> = 0.313). Occasional LLM hallucinations have been mitigated by self-reflection mechanisms. One limitation was the inaccuracy of vision-based LLMs in interpreting dose images.<i>Significance.</i>This pioneering study demonstrates the feasibility of automating radiotherapy planning using LLM-powered agents for complex treatment decision-making tasks. While challenges remain in addressing LLM limitations, ongoing advancements hold potential for further refining and expanding GPT-Plan's capabilities.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adbff1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Radiotherapy planning requires significant expertise to balance tumor control and organ-at-risk (OAR) sparing. Automated planning can improve both efficiency and quality. This study introduces GPT-Plan, a novel multi-agent system powered by the GPT-4 family of large language models (LLMs), for automating the iterative radiotherapy plan optimization.Approach.GPT-Plan uses LLM-driven agents, mimicking the collaborative clinical workflow of a dosimetrist and physicist, to iteratively generate and evaluate text-based radiotherapy plans based on predefined criteria. Supporting tools assist the agents by leveraging historical plans, mitigating LLM hallucinations, and balancing exploration and exploitation. Performance was evaluated on 12 lung (IMRT) and 5 cervical (VMAT) cancer cases, benchmarked against the ECHO auto-planning method and manual plans. The impact of historical plan retrieval on efficiency was also assessed.Results.For IMRT lung cancer cases, GPT-Plan generated high-quality plans, demonstrating superior target coverage and homogeneity compared to ECHO while maintaining comparable or better OAR sparing. For VMAT cervical cancer cases, plan quality was comparable to a senior physicist and consistently superior to a junior physicist, particularly for OAR sparing. Retrieving historical plans significantly reduced the number of required optimization iterations for lung cases (p < 0.01) and yielded iteration counts comparable to those of the senior physicist for cervical cases (p = 0.313). Occasional LLM hallucinations have been mitigated by self-reflection mechanisms. One limitation was the inaccuracy of vision-based LLMs in interpreting dose images.Significance.This pioneering study demonstrates the feasibility of automating radiotherapy planning using LLM-powered agents for complex treatment decision-making tasks. While challenges remain in addressing LLM limitations, ongoing advancements hold potential for further refining and expanding GPT-Plan's capabilities.

基于大语言模型agent的放疗计划自动化可行性研究。
目的:放疗计划需要大量的专业知识来平衡肿瘤控制和器官风险(OAR)保留。自动化计划可以提高效率和质量。本研究引入了一种新型的多智能体系统GPT-Plan,该系统由GPT-4系列大语言模型(llm)驱动,用于自动化迭代放疗计划优化。方法:GPT-Plan使用llm驱动的代理,模仿剂量师和物理学家的协作临床工作流程,根据预定义的标准迭代地生成和评估基于文本的放疗计划。支持工具通过利用历史计划、减轻LLM幻觉以及平衡探索和开发来帮助代理。对12例肺癌(IMRT)和5例宫颈癌(VMAT)患者进行了性能评估,以ECHO自动计划方法和人工计划为基准。历史计划检索对效率的影响也进行了评估。结果:对于IMRT肺癌病例,GPT-Plan生成了高质量的计划,与ECHO相比,显示出更好的目标覆盖和均匀性,同时保持了相当或更好的OAR保留。对于VMAT宫颈癌病例,计划质量与高级物理学家相当,并且始终优于初级物理学家,特别是在桨叶保留方面。检索历史计划显著减少了肺部病例所需的优化迭代次数(p < 0.01),并且产生的迭代次数与资深物理学家对宫颈病例的迭代次数相当(p=0.313)。偶尔的法学硕士幻觉通过自我反思机制得到缓解。其中一个限制是基于视觉的llm在解释剂量图像时的不准确性。意义:这项开创性的研究证明了使用llm驱动的代理进行复杂治疗决策任务的自动化放疗计划的可行性。尽管在解决LLM的局限性方面仍存在挑战,但GPT-Plan的能力仍有进一步完善和扩展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信