Bayesian Windkessel calibration using optimized zero-dimensional surrogate models.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jakob Richter, Jonas Nitzler, Luca Pegolotti, Karthik Menon, Jonas Biehler, Wolfgang A Wall, Daniele E Schiavazzi, Alison L Marsden, Martin R Pfaller
{"title":"Bayesian Windkessel calibration using optimized zero-dimensional surrogate models.","authors":"Jakob Richter, Jonas Nitzler, Luca Pegolotti, Karthik Menon, Jonas Biehler, Wolfgang A Wall, Daniele E Schiavazzi, Alison L Marsden, Martin R Pfaller","doi":"10.1098/rsta.2024.0223","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian boundary condition (BC) calibration approaches from clinical measurements have successfully quantified inherent uncertainties in cardiovascular fluid dynamics simulations. However, estimating the posterior distribution for all BC parameters in three-dimensional (3D) simulations has been unattainable due to infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors: We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. Optimizing 0D models to match 3D data <i>a priori</i> lowered their median approximation error by nearly one order of magnitude in 72 publicly available vascular models. The optimized 0D models generalized well to a wide range of BCs. Using SMC, we evaluated the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model, which we validated against a 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2292","pages":"20240223"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0223","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian boundary condition (BC) calibration approaches from clinical measurements have successfully quantified inherent uncertainties in cardiovascular fluid dynamics simulations. However, estimating the posterior distribution for all BC parameters in three-dimensional (3D) simulations has been unattainable due to infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors: We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. Optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude in 72 publicly available vascular models. The optimized 0D models generalized well to a wide range of BCs. Using SMC, we evaluated the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model, which we validated against a 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

使用优化的零维代理模型的贝叶斯Windkessel校准。
来自临床测量的贝叶斯边界条件(BC)校准方法已经成功地量化了心血管流体动力学模拟中固有的不确定性。然而,由于不可行的计算需求,估计三维(3D)模拟中所有BC参数的后验分布是无法实现的。我们提出了一种有效的方法来识别Windkessel参数后验:我们只评估3D模型一次,以初始选择bc,并使用结果创建一个高度精确的零维(0D)代理。然后,我们使用优化的0D模型进行顺序蒙特卡罗(SMC)来推导高维Windkessel BC后验分布。在72个公开可用的血管模型中,优化d模型以匹配3D数据,先验地将其中值近似误差降低了近一个数量级。优化后的0D模型可以很好地推广到大范围的bc。使用SMC,我们评估了血管模型中不同测量信噪比的高维Windkessel参数后验,并对其进行了3D后验验证。我们的方法使用单个3D模拟的最小计算需求,结合本工作中使用的所有软件和数据的开源性质,将增加心血管流体动力学模拟中贝叶斯Windkessel校准的访问和效率。本文是主题问题“医疗保健和生物系统的不确定性量化(第1部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信