Bayesian inference informed by parameter subset selection for a minimal PBPK brain model.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kamala Dadashova, Ralph C Smith, Mansoor A Haider, Brian J Reich
{"title":"Bayesian inference informed by parameter subset selection for a minimal PBPK brain model.","authors":"Kamala Dadashova, Ralph C Smith, Mansoor A Haider, Brian J Reich","doi":"10.1098/rsta.2024.0219","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically based pharmacokinetic (PBPK) models use a mechanistic approach to delineate the processes of the absorption, distribution, metabolism and excretion of biological substances in various species. These models generally comprise coupled systems of ordinary differential equations involving multiple states and a moderate to a large number of parameters. Such models contain compartments corresponding to various organs or tissues in the body. Before employing the models for treatment, the quantification of uncertainties for the parameters, based on <i>a priori</i> information or data for a specific response, is necessary. This requires the determination of identifiable parameters, which are uniquely determined by data, and uncertainty analysis based on frequentist or Bayesian inference. We introduce a strategy to integrate parameter subset selection, based on identifiability analysis, with Bayesian inference. This approach further refines the subset of identifiable parameters, quantifies parameter and response uncertainties, enhances model prediction and reduces computational cost.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2292","pages":"20240219"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0219","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Physiologically based pharmacokinetic (PBPK) models use a mechanistic approach to delineate the processes of the absorption, distribution, metabolism and excretion of biological substances in various species. These models generally comprise coupled systems of ordinary differential equations involving multiple states and a moderate to a large number of parameters. Such models contain compartments corresponding to various organs or tissues in the body. Before employing the models for treatment, the quantification of uncertainties for the parameters, based on a priori information or data for a specific response, is necessary. This requires the determination of identifiable parameters, which are uniquely determined by data, and uncertainty analysis based on frequentist or Bayesian inference. We introduce a strategy to integrate parameter subset selection, based on identifiability analysis, with Bayesian inference. This approach further refines the subset of identifiable parameters, quantifies parameter and response uncertainties, enhances model prediction and reduces computational cost.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

基于参数子集选择的最小PBPK脑模型贝叶斯推理。
基于生理的药代动力学(PBPK)模型使用一种机制方法来描述生物物质在不同物种中的吸收、分布、代谢和排泄过程。这些模型通常包括涉及多个状态和中等到大量参数的常微分方程的耦合系统。这种模型包含了与体内各种器官或组织相对应的隔间。在采用模型进行处理之前,有必要根据特定响应的先验信息或数据,对参数的不确定性进行量化。这需要确定可识别的参数,这些参数是由数据唯一确定的,以及基于频率论或贝叶斯推理的不确定性分析。我们引入了一种基于可辨识性分析的参数子集选择与贝叶斯推理相结合的策略。该方法进一步细化了可识别参数子集,量化了参数和响应的不确定性,增强了模型预测能力,降低了计算成本。本文是主题问题“医疗保健和生物系统的不确定性量化(第1部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信